• Title/Summary/Keyword: Fiber Optic Displacement Sensor

Search Result 37, Processing Time 0.025 seconds

Measurement of the small vibration using a fiber-optic displacement sensor (광섬유 변위 센서를 이용한 미소 진동의 측정에 관한 연구)

  • Park, Woo-Jong;Lee, Hyuk
    • Proceedings of the KIEE Conference
    • /
    • 1993.11a
    • /
    • pp.353-355
    • /
    • 1993
  • A single-mode fiber-optic interferometer for measuring small vibrations was constructed. The interferometer is based on the Fabry-Perot configuration that uses a single mode bidirectional fiber coupler as a beam splitter and employs peak detection scheme in the signal processing. The instrument was used to measure the displacement of the translator clamped to a piezo crystal.

  • PDF

Temperature Measurement Using Single-Mode Fiber Interferometric Sensor (단일모드 광섬유의 간섭계 센서를 이용한 온도측정)

  • 김덕수;이상호
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.22 no.2
    • /
    • pp.1-5
    • /
    • 1985
  • In this paper, temperature-induced optical phase shifts in single-mode fibers are studied both analytically and experimentally. Temperature sensor using single-mode fiber interferometer is designed and the temperature sensitivity of the sensor system is investigated. This fiber-optic temperature sensor which employs the Mach-Zehnder arrangement is a high sensitivity sensor of phase detection type. In this type, temperature changes are ob-served as a motion of an optical interference fringe pattern. In the measurements using interferometer, one of the important problems is to detect simultaneously the number and direction of fringe displacement resulting from physical perturbations (temperature, pressure, etc.). To realize this, the array detector using multi-mode fiber is designed. By this array detector the number and direction of fringe displacement is Ineasured very conveniently.

  • PDF

Hetero-core Spliced Fiber Optic Sensing System for Environmental Monitoring (환경정보 모니터링을 위한 헤테로코어형 광파이버 센싱 시스템)

  • Kim, Young Bok;Kim, Young Bae;Lee, Hwan Woo
    • Journal of Korean Society of societal Security
    • /
    • v.1 no.3
    • /
    • pp.77-81
    • /
    • 2008
  • In this paper, we introduce a multi purpose environmental monitoring system developed as a commercially available standard using the technique of hetero-core spliced fiber optic sensor. The monitoring system has been tested and evaluated in a possible outdoor condition in view of the full scaled operation at actual sites to be monitored. Additionally, the developed system in this work conveniently provides us with various options of sensor modules intended for monitoring such physical quantities as displacement, distortion, pressure, binary states, and liquid adhesion. Two channels of optical fiber line were monitored, in each of which three displacement sensor modules were connected in series, in order to examine the performance to a pseudo-cracking experiment in the outdoor situation, and to clarify temperature influences to the system in terms of the coupling of optical connectors and the OTDR stability. The pseudo-cracking experiment successfully observed the actually given cracks by means of calculation based on the detected displacement values and their geometrical arrangement of the used sensor modules. And the robustness to the temperature is verified in the various temperature change.

  • PDF

Experimental Study of Load Characteristics of Buried and Exposed Large-Diameter Pipelines Using Fiber-Optic Strain Sensor

  • Chung, Joseph Chul;Lee, Michael Myung-Sub;Kang, Sung Ho
    • Journal of Ocean Engineering and Technology
    • /
    • v.34 no.3
    • /
    • pp.194-201
    • /
    • 2020
  • In this study, an optical-fiber sensor was used to measure loads that could act in an environment similar to the loading conditions that exist in an actual pipe. The structure and the installation method of the optical-fiber strain sensor were applied considering the actual large pipe and the buried pipe environment. Load tests were performed using a displacement sensor and sandbags to determine the deflection of the pipe according to the external load, and the linear measurement results were verified. Considering the conditions that could exist in the actual pipe, the test method was presented, and the strain of the buried pipe generated at this time was measured.

Non-contact Detection of Ultrasonic Waves Using Fiber Optic Sagnac Interferometer (광섬유 Sagnac 간섭계를 이용한 초음파의 비접촉식 감지)

  • Lee, Jeong-Ju;Jang, Tae-Seong;Lee, Seung-Seok;Kim, Yeong-Gil;Gwon, Il-Beom;Lee, Wang-Ju
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.9
    • /
    • pp.1400-1409
    • /
    • 2001
  • This paper describes a fiber optic sensor suitable for non-contact detection of ultrasonic waves. This sensor is based on a fiber optic Sagnac interferometer. Quadrature phase bias between two interfering laser beams in Sagnac loop is introduced by a polarization controller. A stable quadrature phase bias can be confirmed by observing the interferometer output versus phase bias. This method eliminates a digital signal processing for detection of ultrasonic waves using Sagnac interferometer. Interference intensity is affected by the frequency of ultrasonic waves and the time delay of Sagnac loop. Collimator is attached to the end of the probing fiber to focus the light beam onto the specimen surface and to collect the reflected light back into the fiber probe. Ultrasonic waves produced by conventional ultrasonic transducers are detected. This fiber optic sensor based on Sagnac interferometer is very effective for detection of small displacement with high frequency such as ultrasonic waves used in conventional non-destructive testing.

Novel Intensity-Based Fiber Optic Vibration Sensor Using Mass-Spring Structure (질량-스프링 구조를 이용한 새로운 광세기 기반 광섬유 진동센서)

  • Yi, Hao;Kim, Hyeon-Ho;Choi, Sang-Jin;Pan, Jae-Kyung
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.6
    • /
    • pp.78-86
    • /
    • 2014
  • In this paper, a novel intensity-based fiber optic vibration sensor using a mass-spring structure, which consists of four serpentine flexure springs and a rectangular aperture within a proof mass, is proposed and its feasibility test is given by the simulation and experiment. An optical collimator is used to broaden the beam which is modulated by the displacement of the rectangular aperture within the proof mass. The proposed fiber optic vibration sensor has been analyzed and designed in terms of the optical and mechanical parts. A mechanical structure has been designed using theoretical analysis, mathematical modeling, and 3D FEM (Finite Element Method) simulation. The relative aperture displacement according to the base vibration is given using FEM simulation, while the output beam power according to the relative displacement is measured by experiment. The simulated sensor sensitivity of $15.731{\mu}W/G$ and detection range of ${\pm}6.087G$ are given. By using reference signal, the output signal with 0.75% relative error shows a good stability. The proposed vibration sensor structure has the advantages of a simple structure, low cost, and multi-point sensing characteristic. It also has the potential to be made by MEMS (Micro-Electro-Mechanical System) technology.

Hetero-core Spliced Fiber Optical Sensing System for an Environment Monitoring (구조물 모니터링을 위한 헤테로 코어형 광센싱 시스템)

  • Kim, Young-Bok;Lee, Kwon-Soon;Watanabe, Kazuhiro;Sasaki, Hiroyuki;Choi, Yong-Woon
    • Journal of Ocean Engineering and Technology
    • /
    • v.21 no.3 s.76
    • /
    • pp.46-51
    • /
    • 2007
  • A multi-purpose environmental monitoring system has been developed as a commercially available standard using the technique of hetero-core spliced fiber optic sensors, for the purposes of monitoring large-scale structures and preserving natural environments. The monitoring system has been tested and evaluated in a possible outdoor condition, in view of the full-scale operation at actual sites to be monitored. Additionally, the developed system in this work conveniently provides us with various options of sensor modules intended for monitoring such physical quantities as displacement, distortion, pressure, binary states, and liquid adhesion. Two channels of optical fiber line were monitored in each channel, three displacement sensor modules were connected in series, in order to examine the performance to a pseudo-cracking experiment in the outdoor situation and to clarify temperature influences an the system, in terms of the coupling of optical connectors and the OTDR stability. The results from the pseudo-cracking experiment agreed with the actual cracks, by means of calculation, based an the detected displacement values and their geometrical arrangement of the used sensor modules. The temperature change, ranging from 10 to $20^{\circ}C$ resulting from the 10-days free running operation, was found to influence the system stability of ${\pm}10{\mu}m$, primarily due to the coupling instability of the used optical connectors. It was found that fusion splicing, rather than the use of connectors, reduced the fluctuation dawn to ${\pm}2{\mu}m$. The specification and performance of various option modules have been demonstrated to show the capability of inspecting various physical quantities by use of the single system, which would be suitable for multi-purpose environmental monitoring.

Development of Optical Frequency Modulated Fiber Optic Interferometric Sensor (광주파수 변조 광섬유 간섭형 센서의 개발)

  • Kwon, Il-Bum;Kim, Chi-Yeop;Kim, Min-Soo;Lee, Wang-Joo
    • Journal of Sensor Science and Technology
    • /
    • v.9 no.3
    • /
    • pp.163-170
    • /
    • 2000
  • Optical frequency modulated fiber optic interferometric sensor was developed to sense the mechanical quantities, such as displacement, strain, force etc. It has been difficult to distinguish whether the increase of the mechanical quantities or the decrease of the quantities measured by the conventional fiber optic interferometric sensors because their signals only have a sinusoidal wave pattern related to the change of mechanical quantities. In this study, in order to measure the mechanical quantifies with the distinction of the changing direction of the quantities, the fiber of optic Michelson interferometric sensor was simply constructed by the laser light modulated with saw tooth wave pattern. The output signal of the sensor was controlled as the sinusoidal wave. The signal processing was based on the counting of the wave number of the output signal during constant time duration. The strain was determined by the cumulative value of the wave number producted by the gage factor. In order to verify the strain measurement capability of this sensor, the strain increase-decrease test was performed by universal testing machine installed with the aluminum specimen bonded with the fiber optic sensor and electrical strain gage. In the result of the test, the strain from the fiber optic sensor had a good agreement with the values from the electrical strain gage.

  • PDF

An experimental study on estimating deflection of RC beam using resistive strain gauge and fiber optic sensor (센서유형별 측정 변형률을 이용한 철근콘크리트 보의 처짐추정에 관한 실험적 연구)

  • 이규완;박기태;박흥석
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10a
    • /
    • pp.517-522
    • /
    • 2000
  • In the past few years, the nondestructive inspection technology has greatly developed due to the increased necessity to gain a complete understanding of the bridge behavior. Especially, the deformations of bridges contain a lot of informations about its health state. By measuring these deformations it is possible to analyze the loading and aging behavior of the structure. However, the current methods (such as LVDT, dial gage, optical displacement tranceducer, etc) are often of changeable application on site and have the limitations of installation. In this paper, the classical beam theory was reviewed and the deflections of structure are estimated using measured strain which is easy to acquire. The applicability of this algorithm is verified by a preliminary steel beam test and two types of concrete beam tests. Also fiber optic sensors as well as resistive strain gages were installed in the concrete beams to establish the applicability of fiber optic sensors in the field of civil engineering.

  • PDF

Development of Smart Seismic Device Using FBG Sensor for Measuring Vertical Load (수직하중 계측을 위한 FBG센서 기반 스마트 교량 내진장치의 개발)

  • Chang, Sung-Jin;Kim, Nam-Sik;Baek, Joon-Ho
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.11
    • /
    • pp.1089-1098
    • /
    • 2012
  • A faulting could be occurred at the end of deck by unexpected loads to bridge bearing after a bridge completion. Serviceability of bridges could be impaired by the faulting which is caused structural damage. Therefore, smart bridge bearing which can continuously observe the supporting points is needed. Some of bridge bearings have been developed for measuring vertical load and vertical displacement by installing sensors in the bearing. In those systems, however it is not easy to be replaced with new sensors when repairs are needed. In this study, the smart bridge bearing of which sensors can be replaced has been developed to overcome such a problem. In this study, strain signals were used for measuring both of vertical displacements and loads. FBG sensors(fiber optic Bragg-grating sensors) have been used for measurement of the strain signals since it is prevented from electronic noise by mediating light, enables the simplification of the measuring cable by multiple measurement, and is easy to place by lightweight and small size. The possibility of use was reviewed for smart bridge bearing based on FBG sensors through tests.