• Title/Summary/Keyword: Fiber Formation

Search Result 585, Processing Time 0.036 seconds

Effect of Ar- Plasma Treatment on Mechanical Properties of Acrylic Fiber (아크릴섬유의 기계적 물성에 대한 알곤플라즈마 처리의 영향)

  • Seo Eon Deock
    • Textile Coloration and Finishing
    • /
    • v.16 no.6
    • /
    • pp.30-34
    • /
    • 2004
  • Polyacrylontrile fiber was modified with argon low temperature plasma by RF glow discharge at 240 mTorr, 40 W to investigate the surface morphological changes and mechanical characteristics such as elongation, tenacity, and modulus. Analysis of the SEM images revealed that the plasma treatment resulted in significant ablation on the surfaces rendering a severe crack formation. The morphological changes were evident with short treatment time of argon plasma although longer treatment time damaged the surface more severely. The mechanical characteristics such as tenacity and elongation were deteriorated due to the plasma treatment. The tenacity of the fiber treated with argon-plasma for 5 min showed a decreased value up to 21.9 % when compared to the untreated fiber. While the corresponding initial modulus(0 - 1 %) increased markedly up to 44.3 %.

Synthesis of $\beta$-$Ga_{2}O_{3}$Fiber-Wool from GaN Powder and its Characteristics (GaN분말을 이용한 $Ga_{2}O_{3}$fiber-wool의 합성과 특성)

  • 조성룡;여운용;이종원;박인용;김선태
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.848-850
    • /
    • 2001
  • In this work, we investigated on the white-colored ribbon fiber synthesized from GaN powder. We convinced the formation of monoclinic phase $\beta$-Ga$_2$O$_3$from the X-ray diffraction pattern on ribbon fiber. The 10 K PL spectrum consisted with the strong emission band caused by self-activated optical center at 3.464 eV with the full-width at half maximum of 48 meV and the impurity related emission bands. Through this work, the optical properties and the electrical conductivity of $\beta$-Ga$_2$O$_3$, it will be useful for the fabrication of optoelctronic devices operating in visible spectrum region.

  • PDF

The Effect of Drawing Conditions on the Tensile Strength of Optical Fiber (광섬유의 인장강도에 미치는 Drawing Condition의 영향)

  • 한택상;최상삼
    • Journal of the Korean Ceramic Society
    • /
    • v.19 no.1
    • /
    • pp.44-50
    • /
    • 1982
  • Drawing optical fibers in a graphite furnace is one of the most convenient and economical means of producing optical fiber. Since the flaw formation on optical fiber is mainly due to dust contaminations during drawing and surface corrosion by water vapor penetration through coating layer, the tensile strength of optical fiber drawn in a graphite furnace is greatly inflenced by the drawing conditions. The important factors found in this investigation were preform treatment (fire polishing), furnace interior environment (dust contamination, inert gas flows), primary coating condition (resin curing temperature, coating materials, method, thickness) and fiber pulling condition (furnace temperature, drawing speed, pulling tension). The tensile strength at optimum drawing conditions turned out to be 5 ~ 6 GPa.

  • PDF

Fabrication and Application of Nano-Fibers for Korean Post-Textile Industry (나노섬유의 제조와 응용 및 한국의 차세대 섬유산업)

  • 이재락;박수진;김효중;정효진;지승용;김준현
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.10a
    • /
    • pp.3-6
    • /
    • 2003
  • In this work, poly(ethylene oxide) nanofibers were fabricated by electrospinning to prepare nanofibers-reinforced composites. And the PEO powders-impregnated composites were also prepared to compare with physicochemical properties of nanofibers-reinforced composites. Morphology and fiber diameter of PEO nanofibers were determined by SEM observation. Mechanical interfacial properties of the composites were investigated in fracture toughness tests and interlaminar shear strength (ILSS) test. As a result, the fiber diameter decreased in increasing applied voltage. However the optimum condition for the fiber formation was 15 ㎸, resulting from increasing of jet instability at high voltage and the prepared PEO nanofibers were useful in fiber reinforced composites. The PEO-based nanofibers-reinforced composites showed an improvement of fracture toughness factors ($K_{IC} and G_{ IC}$) and ILSS, compared to the composites impregnated with PEO powders. These results were noted that the nanofibers had higher specific surface area and larger aspect ratio than those of the powder, which played an important role in improving the mechanical interfacial properties of the composites.

  • PDF

A Study on Permeability Measuring Method for Fiber Reinforced Concrete (섬유보강 콘크리트의 투수성 측정 기법에 관한 연구)

  • 이상엽;김경원;한만엽;엄주용
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1996.10a
    • /
    • pp.260-265
    • /
    • 1996
  • Polyproplyene Fibers have many advantages such as light weight, low cost, chemical stability and duragbility. It has been reported that polypropylene fiber can increase the toughness of concrete and the resistance to crack formation. This study has been performed to investigate the dirability related properties such as permeability and diffusivity of polypropylene fiber reinforced concrete. The permeability and diffusivity were measured with GWT, Poroscope, and electrical conductivity of concrete. From the test result, it is found that the addition of the polypropylene fiber improved the permeability and diffusivity of concrete, when the workability reduction was corrected by water reducer. The relationships between the permeability and diffusivity, and other properties of polypropylene fiber reinforced concrete showed that the tesst results are interrelated each other.

  • PDF

Evaluation on Water Vapor Pressure of Amorphous Steel Fiber reinforced High Strength Concrete (비정질 강섬유 혼입 고강도콘크리트의 수증기압력 평가)

  • Kim, Duck-Woo;Kim, Gyu-Yong;Hwang, Eui-Chul;Son, Min-Jae;Baek, Jae-Wook;Nam, Jeong-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.11a
    • /
    • pp.44-45
    • /
    • 2018
  • In this study, water vapor pressure of high strength concrete reinforced with amorphous steel fiber(AF) was evaluated. Experimental results show that spalling occurs when the incorporation rate of amorphous steel fiber is 0.5 vol.% or more. This is because the ratio of AF increased per unit area influenced the formation of the water vapor pressure discharge passage by the polypropylene fiber(PPF) melting. Therefore, it is necessary to find the proper mixing ratio of AF and PPF to prevent spalling.

  • PDF

Penetration resistance of steel fiber reinforced concrete containment structure to high velocity projectile

  • Teng, Tso-Liang;Chu, Yi-An;Shen, Bor-Cherng
    • Computers and Concrete
    • /
    • v.5 no.6
    • /
    • pp.509-524
    • /
    • 2008
  • Containment structures not only are leak-tight barriers, but also may be subjected to impacts caused by tornado-generated projectiles, aircraft crashes or the fragments of missile warhead. This paper presents the results of an experimental study of the impact resistance of steel fiber-reinforced concrete against 45 g projectiles at velocity around 2500 m/s. An explosively formed projectile (EFP) was designed to generate an equivalent missile fragment. The formation and velocity of EFP are measured by flash x-ray. A switch made of double-layered thin copper sheets controlled the exposure time of each flash x-ray. The influence of the fiber volume fraction on the crater diameter of concrete slab and the residual velocity of the projectile were studied. The residual velocity of the projectile decreased as the fiber volume fractions increased. In this work, the residual velocity of the projectile was to 44% that of plain concrete when the fiber volume fraction exceeded 1.5%. Based on the present finding, steel fiber reinforced concrete with the fiber volume fraction exceeding 1.5% appear to be more efficient in protection against high velocity fragment impact.

Paper Strength Improvement by Anionic PAM and Cationic Starch Adsorbed PCC (음이온성 PAM과 양이온성 전분으로 도포된 경질탄산칼슘에 의한 종이 강도 향상)

  • Choi, Do-Chim;Choi, Eun-Yeon;Won, Jong Myoung;Cho, Byoung-Uk
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.45 no.1
    • /
    • pp.59-66
    • /
    • 2013
  • Fillers have been used for printing paper to improve printability, sheet formation and optical properties and to reduce production costs by replacing expensive wood pulps. However, an increased filler content will decrease paper strength because filler particles interfere with fiber-fiber bonding. In order to increase filler content without sacrificing too much paper strength in high filler content papers, the surface of precipitated calcium carbonate (PCC) has been modified by adsorbing anionic polyacrylamide and cationic starch in series. The adsorbed polymer layers would enhance interactions between the filler surface and the fiber surface, improving internal bonding. It was found that the modified PCC increased paper strength at a given filler content compared to the coventional method. Negligible differences in optical properties and formation of paper, filler and fines retention and drainage on the wire section were observed between the modified and the conventional PCC. However, the decreased bulk of paper was observed when the modified PCC was used.

Effects of Electrospinning Parameters on the Fiber Formation and Application (전기방사 조건에 따른 나노섬유상의 구조 및 응용)

  • RYU, HO SUK;PARK, JIN SOO
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.29 no.1
    • /
    • pp.71-80
    • /
    • 2018
  • Electrospinning is a versatile technique that utilizes electrostatic forces to produce very thin and fine fibers of polymer ranging from submicron to nanometer scale. The technique can be applied to fibers of a various polymer types. Working parameters in the electrospinning are very important to understand not only the nature of electrospinning but also the conversion of polymer solutions into nanofibers through electrospinning. Those parameters in the electrospinning can be broadly divided into three parts. The first parameter is solution parameters such as molecular weight of polymer, concentration, viscosity, surface tension and conductivity/surface charge density of solution. The second parameter is process such as voltage, distance between the collector and the tip of the syringe, shape of collectors, flow rate. The third parameter is ambient parameters such as humidity and temperature. Fibers which made by electrospinning with working parameters are applied for various fields according to shape such as medical, cloth, photodiode, a sensor technology, catalyst, filtration, battery etc.

Feasibility Study of Dry Forming with Dry Forming Mould (원주형 건식초지기를 이용한 건식초지 가능성 평가)

  • Kim, Jong-Min;Lee, Hak-Lae
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.41 no.1
    • /
    • pp.9-16
    • /
    • 2009
  • Cylindrical dry forming mould was developed to carry out a feasibility study of dry forming of papers. The effect of disintegration, forming, humidification and pressing on dry formed papers was examined. Dry disintegrated fibers showed the similar fiber length distribution to wet disintegrated fibers, but they showed distorsion and damaged appearance on the surface. Process parameters required to form a uniform fiber pad was investigated. A proper screening and air dispersion method was selected that gives proper formation. Humidification and pressing conditions were examined to get a good dry formed papers in dry forming. Results showed that dry forming method can be used to make a sheets with reasonable formation and properties.