• 제목/요약/키워드: Fiber Diameter

검색결과 791건 처리시간 0.033초

Synthesis and Characterization of Ruthenium Doped TiO2 Nanofibers

  • Park, Jung-Yeon;Lee, Deuk-Yong;Cho, Nam-Ihn;Oh, Young-Jei
    • 센서학회지
    • /
    • 제20권2호
    • /
    • pp.82-89
    • /
    • 2011
  • Ruthenium(Ru)-doped $TiO_2$ nanofibers were prepared using electrospun Ru-$TiO_2$/poly(vinyl acetate) (PVAc) fibers and subsequent annealing for 1 h at temperatures in the range of $500^{\circ}C$ to $1000^{\circ}C$ in air. The properties of the Ru-$TiO_2$ fibers were characterized as a function of the Ru content and calcination temperature using X-ray diffraction, thermal gravimetry with differential scanning calorimetry, Fourier transform infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, and viscometer, pycnometer and dynamic tensiometer measurements. Although the diameter of the fiber decreased slightly with increasing calcination temperature, no dramatic changes were observed with respect to the ruthenium content. The XRD and FT-IR results revealed that anatase phase and ruthenium metal began to be formed after calcination at temperatures above $500^{\circ}C$. Anatase and rutile phases and ruthenium metal coexisted in the fibers calcined above $600^{\circ}C$. No anatase phase was detected in the fibers containing ruthenium when they were calcined at $1000^{\circ}C$. The morphology of the fibers changed from smooth and uniform to porous with increasing temperature. The experimental results suggest that the calcination temperature and Ru content were influential in determining the morphology and structure of the fibers.

Synthesis of self-aligned carbon nanotubes on a Ni particles using Chemical Vapour Deposition

  • Park, Gyu-Seok
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2000년도 제18회 학술발표회 논문개요집
    • /
    • pp.64-64
    • /
    • 2000
  • Since its discovery in 1991, the carbon nanotube has attracted much attention all over the world; and several method have been developed to synthesize carbon nanotubes. According to theoretical calculations, carbon nanotubes have many unique properties, such as high mechanical strength, capillary properties, and remarkable electronical conductivity, all of which suggest a wide range of potential applications in the future. Here we report the synthesis in the catalytic decomposition of acetylene at ~65 $0^{\circ}C$ over Ni deposited on SiO2, For the catalyst preparation, Ni was deposited to the thickness of 100-300A using effusion cell. Different approaches using porous materials and HF or NH3 treated samples have been tried for synthesis of carbon nanotubes. It is decisive step for synthesis of carbon nanotubes to form a round Ni particles. We show that the formation of round Ni particles by heat treatment without any pre-treatment such as chemical etching and observe the similar size of Ni particles and carbon nanotubes. Carbon nanotubes were synthesized by chemial vapour deposition ushin C2H2 gas for source material on Ni coated Si substrate. Ni film gaving 20~90nm thickness was changed into Ni particles with 30~90nm diameter. Heat treatment of Ni fim is a crucial role for the growth of carbon nanotube, High-resolution transmission electron microscopy images show that they are multi-walled nanotube. Raman spectrum shows its peak at 1349cm-1(D band) is much weaker than that at 1573cm-1(G band). We believe that carbon nanotubes contains much less defects. Long carbon nanotubes with length more than several $\mu$m and the carbon particles with round shape were obtained by CVD at ~$650^{\circ}C$ on the Ni droplets. SEM micrograph nanotubes was identified by SEM. Finally, we performed TEM anaylsis on the caron nanotubes to determine whether or not these film structures are truly caron nanotubes, as opposed to carbon fiber-like structures.

  • PDF

Investigating the Morphology and Kinetics of Three-Dimensional Neuronal Networks on Electro-Spun Microstructured Scaffolds

  • Kim, Dongyoon;Kim, Seong-Min;Kang, Donghee;Baek, Goeun;Yoon, Myung-Han
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제45회 하계 정기학술대회 초록집
    • /
    • pp.277.2-277.2
    • /
    • 2013
  • Petri dishes and glass slides have been widely used as general substrates for in vitro mammalian cell cultures due to their culture viability, optical transparency, experimental convenience, and relatively low cost. Despite the aforementioned benefit, however, the flat two-dimensional substrates exhibit limited capability in terms of realistically mimicking cellular polarization, intercellular interaction, and differentiation in the non-physiological culture environment. Here, we report a protocol of culturing embryonic rat hippocampal neurons on the electro-spun polymeric network and the results from examination of neuronal cell behavior and network formation on this culture platform. A combinatorial method of laser-scanning confocal fluorescence microscopy and live-cell imaging technique was employed to track axonal outgrowth and synaptic connectivity of the neuronal cells deposited on this model culture environment. The present microfiber-based scaffold supports the prolonged viability of three-dimensionally-formed neuronal networks and their microscopic geometric parameters (i.e., microfiber diameter) strongly influence the axonal outgrowth and synaptic connection pattern. These results implies that electro-spun fiber scaffolds with fine control over surface chemistry and nano/microscopic geometry may be used as an economic and general platform for three-dimensional mammalian culture systems, particularly, neuronal lineage and other network forming cell lines.

  • PDF

Neonatal influenza virus infection affects myelination in influenza-recovered mouse brain

  • Kim, Jin Hee;Yu, Ji Eun;Chang, Byung-Joon;Nahm, Sang-Soep
    • Journal of Veterinary Science
    • /
    • 제19권6호
    • /
    • pp.750-758
    • /
    • 2018
  • Influenza virus infection is a zoonosis that has great socioeconomic effects worldwide. Influenza infection induces respiratory symptoms, while the influenza virus can infect brain and leave central nervous system sequelae. As children are more vulnerable to infection, they are at risk of long-term neurological effects once their brains are infected. We previously demonstrated that functional changes in hippocampal neurons were observed in mice recovered from neonatal influenza infection. In this study, we investigated changes in myelination properties that could affect neural dysfunction. Mice were infected with the influenza virus on postnatal day 5. Tissues were harvested from recovered mice 21-days post-infection. The expression levels for myelin basic protein (MBP) were determined, and immunohistochemical staining and transmission electron microscopy were performed. Real-time polymerase chain reaction and Western blot analyses showed that mRNA and protein expressions increased in the hippocampus and cerebellum of recovered mice. Increased MBP-staining signal was observed in the recovered mouse brain. By calculating the relative thickness of myelin sheath in relation to nerve fiber diameter (G-ratio) from electron photomicrographs, an increased G-ratio was observed in both the hippocampus and cerebellum of recovered mice. Influenza infection in oligodendrocyte-enriched primary brain cell cultures showed that proinflammatory cytokines may induce MBP upregulation. These results suggested that increased MBP expression could be a compensatory change related to hypomyelination, which may underlie neural dysfunction in recovered mice. In summary, the present results demonstrate that influenza infection during the neonatal period affects myelination and further induces functional changes in influenza-recovered mouse brain.

원공이 있는 복합재 적층판의 압축강도 예측 (Compressive Strength Prediction of Composite Laminates Containing Circular Holes)

  • 김성준;박세훈
    • 한국항공우주학회지
    • /
    • 제49권7호
    • /
    • pp.549-555
    • /
    • 2021
  • 원공이 있는 복합재 적층판의 강도는 복합재 항공기기 설계 시 충격하중이 가해지는 부위의 설계 허용치로 사용된다. 일반적으로 BVID (Barely Visible Impact Damage)에 의한 강도저하는 24.0 mm 폭의 시편에 6.0 mm 지름의 원공이 있는 시편의 강도로 가정한다. 본 연구에서는 원공이 있는 복합재 적층판의 강도에 적층각이 미치는 영향을 조사하기 위해 잔류강도 시험을 수행하였다. 원공이 있는 적층판의 강도를 예측하기 위해 특성길이를 이용한 점응력 파손기준을 사용하였고, 이론해를 검증하기 위하여 유한요소해석을 수행하였다. 실험결과로부터 특성길이는 0°, ±45°와 90°층의 비율과 관련이 있음을 보였다. 또한 회귀분석을 통하여 임의의 적층 패턴에 대한 특성길이와 원공이 없는 시편의 강도를 결정하였다.

초고속 용액 원심방사를 이용한 폴리비닐알코올/폴리프로필렌 나노필터 제조 (Preparation of Poly(vinyl alcohol)/polypropylene Nano-filter by High Speed Centrifugal Solution Spinning)

  • 양성백;이정언;박재민;정재훈;김태영;김기영;이상준;염정현
    • 한국염색가공학회지
    • /
    • 제34권1호
    • /
    • pp.20-26
    • /
    • 2022
  • Centrifugal spinning is an emerging technique for fabricating micro-to-nano-fibers in recent years. To obtain fibers with the desired size and morphology, it is necessary to configure and optimize the parameters used in centrifugal spinning. In this study, it was controlled by changing the solution's concentration (7.5, 10, and 12.5 wt.%) and disk's rotational velocity (6,000, 8,000, and 10,000 rpm) to prepare centrifugal spun nano-filter. The morphological property, air permeability, and dust collection efficiency of the PVA/PP bi-layer nanoweb prepared by centrifugal spun PVA on the PP micron nonwoven substrate are studied using a field emission scanning electron microscope, an air permeability tester, and a filter tester equipment, and the analysis results indicate that it is suitable as a nano-filter when the concentration of PVA solution is 10 wt.% and the rotational velocity of the disk is 8,000 rpm. The resultant reduced diameter and uniform fibers also proved that an excellent dust collection efficiency filter could be made.

Exploring effects of different male parent crossings on sheep muscles and related regulatory genes using mRNA-Seq

  • Shi, Jinping;Zhang, Quanwei;Song, Yali;Lei, Zhaomin;Fu, Lingjuan;Cheng, Shuru
    • Animal Bioscience
    • /
    • 제35권8호
    • /
    • pp.1129-1140
    • /
    • 2022
  • Objective: With improvements in living standards and increase in global population, the demand for meat products has been increasing; improved meat production from livestock could effectively meet this demand. In this study, we examined the differences in the muscle traits of different male crossbred sheep and attempted to identify key genes that regulate these traits. Methods: Dubo sheep×small-tailed Han sheep (DP×STH) and Suffolk×small-tailed Han sheep (SFK×STH) were selected to determine meat quality and production performance by Masson staining. Transcriptome sequencing and bioinformatic analysis were performed to identify differentially expressed genes (DEGs) related to meat quality. The presence of DEGs was confirmed by real-time polymerase chain reaction. Results: The production performance of SFK×STH sheep was better than that of DP×STH sheep, but the meat quality of DP×STH sheep was better than that of SFK×STH sheep. The muscle fiber diameter of DP×STH sheep was smaller than that of SFK×STH sheep. Twenty-two DEGs were identified. Among them, four gene ontology terms were related to muscle traits, and three DEGs were related to muscle or muscle fibers. There were no significant differences in the number of single nucleotide mutations and mutation sites in the different male parent cross combinations. Conclusion: This study provides genetic resources for future sheep muscle development and cross-breeding research.

Effects of Planting Density on Growth Characteristics, Dry Matter Yield and Feed Value of Teosinte New Variety, "Geukdong 6" [Zea mays L. subsp. mexicana (Schrad.) H. H. lltis]

  • Lee, Se Ho;Kim, Eun Joong;Lee, Sang Moo
    • 한국초지조사료학회지
    • /
    • 제42권3호
    • /
    • pp.162-168
    • /
    • 2022
  • This study was carried out to investigate the effects of planting densities on the growth characteristics, dry matter yield, and feed value of "Geukdong 6" (a new variety of corn for feed). The experimental design was arranged in a randomized block design with three replications. Treatments consisted of six planting densities, 60 cm × 25 cm (T1), 60 cm × 30 cm (T2), 70 cm × 25 cm (T3), 70 cm × 30 cm (T4), 80 cm × 25 cm (T5) and 80 cm × 30 cm (T6). All treatments were sown on May 14, 2021, and the harvest was on October 3 (late flowering). Plant length and the number of tillers were the highest in T5 (p<0.05), but the number of leaves and stem diameter were the highest in T6 than in the other treatments (p<0.05). Leaf length, leaf width, and dead leaf were not significantly different among the treatments. Organic matter was highest in T6, and crude protein was highest in T5 (p<0.05). The ether extract was not significantly different among the treatments. Crude fiber, NDF, and ADF were highest in T2 with relatively higher planting density (p<0.05). Calcium and phosphorus were not significantly different among the treatments. TDN content was the highest in T3 (p<0.05). Sugar degree (Brix), fructose, glucose, dextran, isomerose, and inverted sugar were not significantly different among the treatment. Fresh yield, dry matter yield and TDN yield were higher in order of T6 > T5 > T4 > T3 > T2 > T1 (p<0.05). Relatively feed value was higher in order of T3 > T6 > T5 > T1 > T4 > T2 (p<0.05). Based on the above results, planting density could be recommended from 80 cm × 30 cm for efficient production of "Geukdong 6".

고밀도 폴리에틸렌 플렉시 필라멘트로 제조된 습식부직포의 에어필터 여재 특성 연구 (Air-Filter Media Characteristics of Wet-laid Nonwoven based on HDPE Plexi-filament)

  • 배영환;위재형;이명성;양병진;김도군;여상영
    • 한국염색가공학회지
    • /
    • 제33권4호
    • /
    • pp.302-308
    • /
    • 2021
  • Air filters are being used in countless places from industrial sites to everyday life. The spread of the COVID-19 virus, which started in 2019, is disrupting people's daily lives, and the importance of air filters as a basic means to prevent the spread of these diseases is further highlighted. In this study, the purpose was to develop another type of air filter media with excellent barrier properties that can replace PP meltblown nonwoven fabrics widely used commercially due to its excellent electrostatic properties, differential pressure and filtration efficiency. Therefore, wet-laid nonwoven for air filters were manufactured using plexi-filaments formed through flash spinning and having various fiber diameter from hundreds of nanometers to tens of micrometers, and its applicability as an air-filter media was investigated compared to the meltblown nonwoven. As a result of the performance evaluation, it was found that the filtration efficiency and barrier performance at 0.3㎛ was superior to that of the meltblown nonwoven of the same weight, although the differential pressure was high due to morphological properties of the plexi-filament.

Experimental and numerical studies of concrete bridge decks using ultra high-performance concrete and reinforced concrete

  • Shemirani, Alireza Bagher
    • Computers and Concrete
    • /
    • 제29권 6호
    • /
    • pp.407-418
    • /
    • 2022
  • This paper numerically investigates the effect of changes in the mechanical properties (displacement, strain, and stress) of the ultra-high-performance concrete (UHPC) without rebar and the reinforced concrete (RC) using steel re-bars. This reinforced concrete is mostly used in the concrete bridge decks. A mixture of sand, gravel, cement, water, steel fiber, superplasticizer, and micro silica was used to fabricate UHPC specimens. The extended finite element method as used in the ABAQUS software is applied for considering the mechanical properties of UHPC, RC, and ordinary concrete specimens. To calibrate the ABAQUS, some experimental tests have been carried out in the laboratory to measure the direct tensile strength of UHPC by the compressive-to-tensile load converting (CTLC) device. This device contains a concrete specimen and is mounted on a universal tensile testing apparatus. In the experiments, three types of mixed concrete were used for UHPC specimens. The tensile strength of these specimens ranges from 9.24 to 11.4 MPa, which is relatively high compared with ordinary concrete specimens, which have a tensile strength ranging from 2 to 5 MPa. In the experimental tests, the UHPC specimen of size 150×60×190 mm with a central hole of 75 mm (in diameter)×60 mm (in thickness) was specially made in the laboratory, and its direct tensile strength was measured by the CTLC device. However, the numerical simulation results for the tensile strength and failure mechanism of the UHPC were very close to those measured experimentally. From comparing the numerical and experimental results obtained in this study, it has been concluded that UHPC can be effectively used for bridge decks.