• Title/Summary/Keyword: Fiber Diameter

Search Result 793, Processing Time 0.025 seconds

Micropattern Arrays of Polymers/Quantum Dots Formed by Electrohydrodynamic Jet (e-jet) Printing (이젯 프린터를 사용한 고분자/퀀텀닷 마이크로 패터닝 공정)

  • Kim, Simon;Lee, Su Eon;Kim, Bong Hoon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.1
    • /
    • pp.18-23
    • /
    • 2022
  • Electrohydrodynamic jet (e-jet) printing, a type of direct contactless microfabrication technology, is a versatile fabrication process that enables a wide range of micro/nanopattern arrays by applying a strong electric field between the nozzle and the substrate. In general, the morphology and the thickness of polymers/quantum dot micropatterns show a systematic dependence on the diameter of the nozzle and the ink composition with a fully automated printing machine. The purpose of this report is to provide typical examples of e-jet printed micropatterns of polymers/quantum dots to explain the effect of each process variable on the result of experiments. Here, we demonstrate several operating conditions that allow high-resolution printing of layers of polymers/quantum dots with a precise control over thickness and submicron lateral resolution.

The roles of growth factors and hormones in the regulation of muscle satellite cells for cultured meat production

  • Syed Sayeed Ahmad;Hee Jin Chun;Khurshid Ahmad;Sibhghatulla Shaikh;Jeong Ho Lim;Shahid Ali;Sung Soo Han;Sun Jin Hur;Jung Hoon Sohn;Eun Ju Lee;Inho Choi
    • Journal of Animal Science and Technology
    • /
    • v.65 no.1
    • /
    • pp.16-31
    • /
    • 2023
  • Cultured meat is a potential sustainable food generated by the in vitro myogenesis of muscle satellite (stem) cells (MSCs). The self-renewal and differentiation properties of MSCs are of primary interest for cultured meat production. MSC proliferation and differentiation are influenced by a variety of growth factors such as insulin-like growth factors (IGF-1 and IGF-2), transforming growth factor beta (TGF-β), fibroblast growth factors (FGF-2 and FGF-21), platelet-derived growth factor (PDGF) and hepatocyte growth factor (HGF) and by hormones like insulin, testosterone, glucocorticoids, and thyroid hormones. In this review, we investigated the roles of growth factors and hormones during cultured meat production because these factors provide signals for MSC growth and structural stability. The aim of this article is to provide the important idea about different growth factors such as FGF (enhance the cell proliferation and differentiation), IGF-1 (increase the number of myoblasts), PDGF (myoblast proliferation), TGF-β1 (muscle repair) and hormones such as insulin (cell survival and growth), testosterone (muscle fiber size), dexamethasone (myoblast proliferation and differentiation), and thyroid hormones (amount and diameter of muscle fibers and determine the usual pattern of fiber distributions) as media components during myogenesis for cultured meat production.

The effect of biogas slurry application on biomass production and the silage quality of corn

  • Hua Sun;Kai Shi;Hairong Ding;Chenglong Ding;Zhiqing Yang;Chen An;Chongfu Jin;Beiyi Liu;Zhaoxin Zhong;Xia Xiao;Fuyin Hou
    • Animal Bioscience
    • /
    • v.36 no.12
    • /
    • pp.1918-1925
    • /
    • 2023
  • Objective: The objective of this study was to evaluate the effect of biogas slurry application on biomass production and the silage quality of corn. Methods: A field experiment was conducted in which corn was grown using different biogas slurry application rates. The effect of 25% to 500% biogas slurry nitrogen replacement (T1 to T14) on the yield and quality indices of corn were studied by field plot experiments. Results: The results revealed that biogas slurry application improved the stem diameter and relative feed value of corn silage in treatments T13 and T11. Moreover, the fermentation quality of corn silage was improved due to an increase in lactic acid content; in comparison with the chemical synthetic fertilizer (CF) group. The crude protein contents of corn silage had no obvious change with increasing biogas slurry application. However, the forage quality index of acid detergent fiber was decreased (p<0.05) in the T11 group compared with the CF group. In addition, higher (p<0.05) 30 h in vitro dry matter digestibility and 30 h in vitro neutral detergent fiber digestibility were observed in the T11 and T13 groups than in the CF group. Conclusion: Based on these results, it was concluded that the optimum biogas slurry application rate for corn was approximately 350% to 450% biogas slurry nitrogen replacement under the present experimental conditions.

Evaluation of Near Surface Mounted (NSM) FRP technique for strengthening of reinforced concrete slabs

  • Chunwei Zhang;M. Abedini
    • Advances in concrete construction
    • /
    • v.16 no.4
    • /
    • pp.205-216
    • /
    • 2023
  • Concrete structures may become vulnerable during their lifetime due to several reasons such as degradation of their material properties; design or construction errors; and environmental damage due to earthquake. These structures should be repaired or strengthened to ensure proper performance for the current service load demands. Several methods have been investigated and applied for the strengthening of reinforced concrete (RC) structures using various materials. Fiber reinforced polymer (FRP) reinforcement is one of the most recent type of material for the strengthening purpose of RC structures. The main objective of the present research is to identify the behavior of reinforced concrete slabs strengthened with FRP bars by using near surface mounted (NSM) technique. Validation study is conducted based on the experimental test available in the literature to investigate the accuracy of finite element models using LS-DYNA to present the behavior of the models. A parametric analysis is conducted on the effect of FRP bar diameters, number of grooves, groove intervals as well as width and height of the grooves on the flexural behavior of strengthened reinforced slabs. Performance of strengthening RC slabs with NSM FRP bars was confirmed by comparing the results of strengthening reinforced slabs with control slab. The numerical results of mid-span deflection and stress time histories were reported. According to the numerical analysis results, the model with three grooves, FRP bar diameter of 10 mm and grooves distances of 100 mm is the most ideal and desirable model in this research. The results demonstrated that strengthening of reinforced concrete slabs using FRP by NSM method will have a significant effect on the performance of the slabs.

ELECTRON MICROSCOPIC STUDY OF SLOWLY ADAPTING PERIODONTAL MECHANORECEPTIVE PRIMARY AFFERENT FIBERS WITHIN THE SUBNUCLEUS ORALIS OF THE CAT (서순응형 치근막 일차구심성 신경섬유 종말부의 Subnucleus oralis에서의 시냅스 양상에 관한 전자현미경적 연구)

  • Kim, Moo-Jung;Bae, Yong-Chul;Kim, Chin-Soo
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.15 no.4
    • /
    • pp.281-301
    • /
    • 1993
  • It was revealed that the morphology and projection pattern of terminal arbors from single primary afferent are different among distinct fiber types, functional types and the different subdivision of trigeminal sensory nucleus complex(TSNC). But it was not identified the ultrastructural morphology and synaptic connections of terminal arbors from each primary afferent within TSNC. So we employed the intra-axonal horseradish peroxidase(HRP) injection technique to define the terminal arbors of primary afferent fiber from slowly adapting mechanoreceptors in the periodontal ligament of the cat, and examined 66 labeled terminal arbors within the rostrodorsomedial part(Vo.r) of the trigeminal nucleus oralis, electromicroscopically with 90nm serial sections. All the boutons labelled with HRP contained clear, spherical and uniform sized synaptic vesicles(diameter : $47.66{\pm}3.58nm$ ). Most of the labelled boutons were boutons en passant type and they were connected by unmyelinated axonal strand. In which neurofilament and microtubule was not developed but occasionally contained synaptic vesicle in contrast to the myelinated axon. The size of the labelled bouton was relatively small(long diameter : $1.46{\pm}0.24{\mu}m$, short diameter $0.85{\pm}0.26{\mu}m$, average diameter $1.15{\pm}0.24{\mu}m$) and the shape of which varied from dome to elongated shape, but scalloped glomerulus shape was not developed. Each primary ending in Vo.r made synapse with one or two neuronal propiles(average : $1.11{\pm}0.31$), of which, 89.4% of labelled boutons made synapse with only one neuronal pro pile, the remainder, 10.6% of labelled boutons, made synapse with two neuronal propile. So characteristically they made very simple synapse. Most of labelled boutons(80.03%) made asymmetrical synapse only with dendritic shaft or spine, and 6.1% of labelled boutons received symmetrical synapse from pleomorphic vesicle containing axonal ending(p-ending). So presynaptic inhibiton was relatively scarce. Synaptic triad, in which a p-ending is presynaptic both pre-and post-synaptic element of the axo-dendritic contact from the labelled primary ending was not observed.

  • PDF

Effect of Different Energy Frames on the Impact Velocity of Strain Energy Frame Impact Machine (에너지 프레임 종류에 따른 변형에너지 프레임 충격시험장치의 충격속도)

  • PARK, Seung Hun;PARK, Jun Kil;TRAN, Tuan Kiet;KIM, Dong Joo
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.4
    • /
    • pp.363-375
    • /
    • 2015
  • This research investigated the effects of diameter and material of energy frame on the impact velocity or strain rate of Strain Energy Frame Impact Machine (SEFIM). The impact speed of SEFIM have been clearly affected by changing the diameter and material of the energy frame. The reduced diameter of the energy frame clearly increased the impact velocity owing to the higher strain at the moment of coupler breakage. And, titanium alloy energy frame produced the fastest speed of impact among three materials including steel, aluminum and titanium alloys because titanium alloy has faster wave velocity than steel. But, aluminium energy frame was broken during impact tests. In addition, the tensile stress versus strain response of high performance fiber reinforced cementitious composites at higher and wider strain rates between 10 and 72 /sec was successfully obtained by using four different energy frames.

The Welding Surface and Mechanical Characteristics in Friction Stir Welding for 5456-H116 Alloy (마찰교반용접에 의한 5456-H116 합금의 용접 형상과 기계적 특성)

  • Kim, Seong-Jong;Han, Min-Su;Jang, Seok-Ki
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.18 no.3
    • /
    • pp.273-278
    • /
    • 2012
  • The use of Al alloys instead of fiber-reinforced plastic(FRP) in ship construction has increased because of the advantages of Al-alloy ships, including high speed, increased load capacity, and ease of recycling. This paper describes the effects of probe diameter on the optimum friction stir welding conditions of 5456-H116 alloy for leisure ship, measured by a tensile test. In friction stir welding using a probe diameter of 5 mm under various travel and rotation speed conditions, the best performance was achieved with a travel speed of 61 mm/min. Using a probe diameter of 6 mm, rotation speeds of 170-210 rpm, and a travel speed of 15 mm/min produced a rough surface and voids because of insufficient heat input produced by the low rotation speed. At 500-800 rpm, chips were observed, although there were no voids, and the weld surface was excellent. However, at 1100-2500 rpm, many chips were produced due to excessive heat input. Heat effects were very evident on the bottom. For a travel speed of 15 mm/min, heat input caused by friction increased as the rotation speed increased. The mechanical characteristics were degraded by accelerated softening due to increasing heat input.

Detectability of Pore Defect in Wind Turbine Blade Composites Using Image Correlation Technique (이미지 상관 기법을 이용한 풍력 발전 블레이드용 복합재료의 기공 결함 검출능)

  • Kim, Jong Il;Huh, Yong Hak;Lee, Gun Chang
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.10
    • /
    • pp.1201-1206
    • /
    • 2013
  • Defects that occur during the manufacturing process or operation of a wind turbine blade have a great influence on its life and safety. Typically, defects such as delamination, pore, wrinkle and matrix crack are found in a blade. In this study, the detectability of the pores, a type of defect that frequently occur during manufacturing, was examined from the full field strain distribution determined with the image correlation technique. Pore defects were artificially introduced in four-ply laminated GFRP composites with $0^{\circ}/{\pm}45^{\circ}$ fiber direction. The artificial pores were introduced in consideration of their size and location. Three different-sized pores with diameter of 1, 2 and 3 mm were located on the top and bottom surface and embedded. By applying static loads of 0-200 MPa, the strain distributions over the specimen with the pore defects were determined using image correlation technique. It was found the pores with diameter exceeding 2 mm can be detected in diameter.

Effect of Sodium Lignosulfonate Treatment on the Dispersion of CaCO3 in CaCo3/Polypropylene Composite (Sodium Lignosulfonate 표면처리가 탄산칼슘/폴리프로필렌 복합체에서 탄산칼슘의 분산에 미치는 영향)

  • Song, Junyoung;Kwark, Young-Je;Jeong, Youngjin
    • Polymer(Korea)
    • /
    • v.39 no.3
    • /
    • pp.382-387
    • /
    • 2015
  • The dispersion of calcium carbonate ($CaCO_3$) in polypropylene (PP) and the effect of $CaCO_3$ size on the crystallinity of PP were studied. Polymer composite usually suffers from the brittleness when reinforced with inorganic fillers. The problem is generally related to the size and dispersion of fillers. First, the dispersion was studied for the nanosize $CaCO_3$ with 15~40 nm average diameter. To enhance the dispersibility in PP, the surface of the $CaCO_3$ was treated with sodium lignosulfonate (SLS). $CaCO_3$/PP composites were prepared via melt compounding. The $CaCO_3$ coated with more than 3 wt% SLS was uniformly distributed within the PP matrix, while the uncoated $CaCO_3$ formed aggregated structures in the PP. Even with 30 wt%, the SLS-$CaCO_3$ was well dispersed in the PP matrix. Also, the transition enthalpy of $CaCO_3$/PP increased and the full-width of half maximum of the crystallization peak decreased regardless of SLS coating and size of $CaCO_3$. However, the crystallinity of PP was more influenced by nano $CaCO_3$. These results imply that the nano $CaCO_3$ coated with SLS may reduce the brittleness of polymer composites.

Anatomical Characteristics of Three Korean Bamboo Species (국내산 대나무 3종의 해부학적 특성)

  • Jeon, Woo-Seok;Kim, Yun-Ki;Lee, Ju-Ah;Kim, Ah-Ran;Darsan, Byantara;Chung, Woo-Yang;Kim, Nam-Hun
    • Journal of the Korean Wood Science and Technology
    • /
    • v.46 no.1
    • /
    • pp.29-37
    • /
    • 2018
  • Bamboo is one of the major biomass resources in the world. To obtain valuable information for effective use of bamboo resources in Korea, the anatomical characteristics of the commercial Korean bamboo species (Phyllostachys pubescens, Phyllostachys nigra, and Phyllostachys bambusoides) were analyzed. The structures in bamboo culm were observed by optical and scanning electron microscopy. Also the crystalline properties as relative crystallinity and crystallite width were measured by an X-ray diffraction method. The three Korean bamboo species had the vascular bundle type I with tylosoid in intercellular space. In the outer part of culm, vascular bundles showed denser spacing than inner part. The fiber length in outer part samples of the three bamboo species showed longer than inner part samples. Furthermore, the fiber length showed a significant difference between inner part and outer part in three bamboo species, showing the longest fiber length in Phyllostachys bambusoides. Phyllostachys pubescens showed the greatest diameter in vessel and parenchyma on cross section. Parenchyma cells in Phyllostachys pubescens and Phyllostachys bambusoides showed similar length and width in both radial and tangential sections. The relative crystallinity and crystallite width in outer part samples of the three bamboo species showed higher values than those in inner part samples, with the greatest values from Phyllostachys bambusoides.