• Title/Summary/Keyword: Fiber Diameter

Search Result 788, Processing Time 0.027 seconds

A Study of the Non-Contact Bill Counter using Optical Fiber Sensor (광섬유 센서를 이용한 지폐 계수 장치에 관한 연구)

  • Kang, Dae-Hwa;Shin, Woo-Cheol;Song, Doo-Sang;Jang, Tak-Soon;Hong, June-Hee
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.6
    • /
    • pp.231-236
    • /
    • 2007
  • In this paper, we studied the possibility of non-contact bill counting method using optical fiber sensor instead of traditionally used friction counting method. To implement non-contact counting, we designed and made optical fiber sensor and related parts. optical fiber sensor is made of optical fiber of 1mm diameter, photo diode and laser diode. Based on the conclusion which derived from preliminary experiment, instrument part is designed to make unevenness on the surface of bill paper and to stay parallel with optical fiber section. By analyzing the signal of optical sensor, we made counting program. Experimental instrument is composed of sensor part, instrument part, signal handling part. We checked the possibility of non-contact counting method after implementing experiment by using optical fiber sensor and instrument part.

Preparation of Activated Carbon Fiber from Chemically Modified Coal-tar Pitch

  • Lee, Dong-Jun;Yang, Gap-Seung;Ryu, S.K.;Kim, Y.J.
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 1996.10a
    • /
    • pp.117-123
    • /
    • 1996
  • Cabon fiber of general purpose was prepared from coal tar pitch modified with 10% benzoquinine(BQ) at 380C for 3 hours. Such a modified pitch raised the softening of the pitch from 85C to 271C at the yield of 40%. The modified pitch was spun smoothly at a rate of 480m/min into a fiber of 20um diameter. The fiber was stabilized stepwise at 236C (5C/min) and 312C (1C/min) for 3 hours each. Both carbonized and graphitized fibers exhibited tensile strength of 570MPa which appears large enough as a precursor for active carbon fiber. The activated carbon fiber prepared exhibited relatively high surface area of 2062m2/g at 76% burn-off and rather narrow distribution pore size of 20A.

  • PDF

Resonant Wavelength Characteristics of Arc-Induced Long-Period Fiber Gratings (아크 유도 장주기 광섬유 격자의 공진 파장 특성)

  • Chung, Chul;Lee, Ho-Joon
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.39 no.10
    • /
    • pp.48-56
    • /
    • 2002
  • A fabrication method of long--period fiber gratings (LPFGs) that can be easily controlled resonance wavelength and losses is introduced. We used the superposition method that core and cladding diameter are modulated by applying a number of small electric-arc to the normal fiber. We derived an equation of resonance wavelength change according to core diameter variation using the phase matching condition and showed the results are well matched with experiments. The measured resonant wavelengths of arc-induced superposition LPFGs according to grating period are well coincident with that of phase matching condition. The resonance wavelength is measured for the temperature changes and a slight mechanical strength degradation of arc-induced LPFGs is observed by increasing arc times.

Fabrication of the Optical Fiber-Photodiode Array Module Using Si v-groove (실리콘 v-groove를 이용한 광섬유-광검출기 어레이 모듈 제작)

  • 정종민;지윤규;박찬용;유지범;박경현;김홍만
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.31A no.6
    • /
    • pp.88-97
    • /
    • 1994
  • We describe the design, fabrication, and performance of the optical fiber-photodiode 1$\times$12 arry module using mesa-type InS10.53T GaS10.47TAS/INP 1$\times$12 PIN photodiode array. We fabricated the PIN PD array for high-speed optical fiber parallel data link optimizing quantum efficiency, operating speed sensitivity from the PIN-FET structure, and electrical AC crosstalk. For each element of the array, the diameter of the photodetective area is 80 $\mu$m, the diameter of the p-metal pad is 90 $\mu$m, and the photodiode seperation is 250 $\mu$m to use Si v-groove. Ground conductor line is placed around diodes and p-metal pads are formed in zigzag to reduce Ac capacitance coupling between array elements. The dark current (IS1dT) is I nA and the capacitance(CS1pDT) is 0.9 pF at -5 V. No signifcant variations of IS1dT and CPD from element to element in the array were observed. We calulated the coupling efficiency for 10/125 SMF and 50/125 GI MMF, and measured the responsivity of the PD array at the wavelength is 1.55 $\mu$ m. Responsivities are 0.93 A/W for SMF and 0.96 A/W for MMF. The optical fiber-PD array module is useful in numerous high speed digital and analog photonic system applications.

  • PDF

Utilization of Kenaf Cultivated in Korea(I) - Growth and Anatomical Characteristics of Kenaf Cultivated in Korea - (국내산 Kenaf 이용에 관한 연구(제1보) -국내에서 재배한 kenaf의 생장 및 해부학적 특성-)

  • 이명구;윤승락
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.35 no.4
    • /
    • pp.68-74
    • /
    • 2003
  • Kenaf(Hibiscus cannabinus L.) cultivar, Tainung 2, had been grown for 152 days at the experimental farm of Jinju National University, Gajoa-dong, Jinju-si, Kyongnam, Korea. The planting, growth rate, fertilization and structural characteristics as well as the cultivation and growth characteristics of kenaf, and the product usage were investigated. The narrowest diameter at kenaf bottom was 10 mm, the widest 42 mm and the average about 28 mm, and the shortest height 150 cm, the tallest 480 cm and the average about 350 cm. The weight of a core fraction was 68.1% and a bast fraction 31.9%. The weight ratio of core material to bast fiber was 2.31. The weight ratio of dry stem was 73.5% and that of leaves 26.5%. The weight of dry plant produced in 1 $m^2$ was 1,467 g, and about 1,052 g of stem could be used for the commercial purpose, The application of fertilizers resulted in the increase of the growth rate of the diameter at plant bottom and the height. Bast fiber, phloem ray and cortex parenchyma cell were observed in bast, and vessel, wood fiber and ray in core.

New emerging surface treatment of GFRP Hybrid bar for stronger durability of concrete structures

  • Park, Cheolwoo;Park, Younghwan;Kim, Seungwon;Ju, Minkwan
    • Smart Structures and Systems
    • /
    • v.17 no.4
    • /
    • pp.593-610
    • /
    • 2016
  • In this study, an innovative and smart glass fiber-reinforced polymer (GFRP) hybrid bar was developed for stronger durability of concrete structures. As comparing with the conventional GFRP bar, the smart GFRP Hybrid bar can promise to enhance the modulus of elasticity so that it makes the cracking reduced than the case when the conventional GFRP bar is used. Besides, the GFRP Hybrid bar can effectively resist the corrosion of conventional steel bar by the GFRP outer surface on the steel bar. In order to verify the bond performance of the GFRP hybrid bar for structural reinforcement, uniaxial pull-out test was conducted. The variables were the bar diameter and the number of strands and pitch of the fiber ribs. Tensile tests showed a excellent increase in the modulus of elasticity, 152.1 GPa, as compared to that of the pure GFRP bar (50 GPa). The stress-strain curve was bi-linear, so that the ductile performance could be obtained. For the bond test, the entire GFRP hybrid bar test specimens failed in concrete splitting due to higher shear strength resulting in concrete crushing as a function of bar deformation. Investigation revealed that an increase in the number of strands of fiber ribs enhanced the bond strength, and the pitch guaranteed the bond strength of 19.1 mm diameter hybrid bar with 15.9 mm diameter of core section of deformed steel the ACI 440 1R-15 equation is regarded as more suitable for predicting the bond strength of GFRP hybrid bars, whereas the CSA S806-12 prediction is considered too conservative and is largely influenced by the bar diameter. For further study, various geometrical and material properties such as concrete cover, cross-sectional ratio, and surface treatment should be considered.

Photoluminescence and Fabrication of Zirconia Nanofibers from Electrospinning an Alkoxide Sol Templated on a Polyvinyl Butyral (폴리비닐 부티랄에 붙힌 지르코늄 알콕시드 졸을 사용한 전기방사에서 지르코니아 나노섬유 제조와 광발광)

  • Ko, Tae-Gyung;Han, Kyu-Suk;Rim, Tae-Kyun;Oh, Seoung-Gyu;Han, Sang-Whan
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.4
    • /
    • pp.343-352
    • /
    • 2010
  • A zirconia gel/polymer hybrid nanofiber was produced in a nonwoven fabric mode by electrospinning a sol derived from hydrolysis of zirconium butoxide with a polyvinyl butyral. Results indicated that the hydroxyl groups on the vinyl alcohol units in the backbone of the polymer were involved in the hydrolysis as well as grafting the hydrolyzed zirconium butoxide. In addition, use of acetic acid as a catalyst resulted in further hydrolysis and condensation in the sol, which led to the growth of -Zr-O-Zr- networks among the polymer chains. These networks gradually transformed into a crystalline zirconia structure upon heating. The as-spun fiber was smooth but partially wrinkled on the surface. The average fiber diameter was $690{\pm}110\;nm$. The fiber exhibited a strong but broad blue photoluminescence with its maximum intensity at a wavelength of ~410 nm at room temperature. When the fiber was heat-treated at $400^{\circ}C$, the fiber diameter shrunk to $250{\pm}60\;nm$. Nanocrystals which belonged to a tetragonal zirconia phase and were ~5 nm in size appeared. A strong white photoluminescence was observed in this fiber. This suggests that oxygen or carbon defects associated with the formation of the nanocrystals play a role in generating the photoluminescence. Further heating to $800^{\circ}C$ resulted in a monoclinic phase beginning to form In the heat-treated fibers, coloring occurred but varied depending on the heating temperature. Crystallization, coloring, and phase transition to the monoclinic structure influenced the photoluminescence. At $600^{\circ}C$, the fiber appeared to be fully crystallized to a tetragonal zirconia phase.

Effect of Additives on the Strength Characteristics of MDF Cement Composites (MDF 시멘트 복합재료의 강도 특성에 미치는 첨가재의 영향)

  • 김태현;최상흘
    • Journal of the Korean Ceramic Society
    • /
    • v.29 no.11
    • /
    • pp.893-899
    • /
    • 1992
  • Composite specimens, which are composed MDF cement of HAC-PVA system were prepared by adding carbon fiber, hydrated silica and SiC powder, and we studied effect of additives on the flexural strength of the composites. All of additives is effective in the improvement of flexural strength of the composite specimens. The size of average pore diameter in the specimens which have high flexural strength property was small. Specimen mixed with hydrated silica was effective in the particle compact property. Flexural strength of carbon fiber reinforced MDF cement composites were improved because of crack deflection of carbon fiber in cementitious matrix.

  • PDF

Effects of Air-Gap Distances on Properties of Cellulose Fiber Spun (셀룰로오스 섬유의 방사시 공기층 거리가 물성에 미치는 영향)

  • 홍영근;조성무;이화섭
    • Textile Coloration and Finishing
    • /
    • v.5 no.2
    • /
    • pp.139-143
    • /
    • 1993
  • The effects of air-gap distance on properties of cellulose fiber spun from the 6 wt% solution of cellulose in monohydrate N-methylmorpholine N-oxide (NMMO) were investigated. The diameter of fiber spun was drastically reduced in 10 cm of air-gap distance at fixed drawing speed, however, no great change was observed beyond 40 cm. As the distance lengthened, the Cellulose II structure was first appeared and followed by Cellulose II and IV mixed morphology. Also the degree of crystallinity and the size of crystals were tending to decrease.

  • PDF

The Relationship between Splitting Tensile Strength and Compressive Strength of Fiber Reinforced Concretes

  • Choi, Yeol;Kang, Moon-Myung
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.1
    • /
    • pp.155-161
    • /
    • 2003
  • This paper presents experimental and analytical results of glass fiber-reinforced concrete (GFRC) and polypropylene fiber-reinforced concrete (PERC) to investigate the relationship between tensile strength and compressive strength based on the split cylinder test (ASTM C496) and compressive strength test (ASTM C39). Experimental studies were performed on cylinder specimens having 150 mm in diameter an 300 mm in height with two different fiber contents (1.0 and 1.5% by volume fraction) at ages of 7, 28 and 90 days. A total of 90 cylinder specimens were tested including specimens made of the plain concrete. The experimental data have been used to obtain the relationship between tensile strength and compressive strength. A representative equation is proposed for the relationship between tensile strength and compressive strength of fiber-reinforced concrete (FRC) including glass and polypropylene fibers. There is a good agreement between the average experimental results and those calculated values from the proposed equation.