• Title/Summary/Keyword: Fiber Degradation

Search Result 463, Processing Time 0.024 seconds

Seismic repair of captive-column damage with CFRPs in substandard RC frames

  • Tunaboyu, Onur;Avsar, Ozgur
    • Structural Engineering and Mechanics
    • /
    • v.61 no.1
    • /
    • pp.1-13
    • /
    • 2017
  • The effectiveness of the repair scheme for the damaged captive-columns with CFRPs (Carbon Fiber Reinforced Polymer) was investigated in terms of response quantities such as strength, ductility, dissipated energy and stiffness degradation. Two 1/3 scale, one-story one-bay RC (Reinforced Concrete) frames were designed to represent the substandard RC buildings in Turkish building stock. The first one, which is the reference specimen, is the bare frame without infill wall. Partial infill wall with opening was constructed between the columns of the second frame and this caused captive column defect. Severe damage was observed with the concentration of shear cracks in the second specimen columns. Then, the damaged members were repaired by CFRP wrapping and retested. For the three test series, similar reversed cyclic lateral displacement under combined effect of axial load was applied to the top of the columns. Overall response of the bare frame was dominated by flexural cracks. Brittle type of shear failure in the column top ends was observed in the specimen with partial infill wall. It was observed that former capacity of damaged members of the second frame was recovered by the applied repair scheme. Moreover, ultimate displacement capacity of the damaged frame was improved considerably by CFRP wrapping.

Modeling shear behavior of reinforced concrete beams strengthened with externally bonded CFRP sheets

  • Khan, Umais;Al-Osta, Mohammed A.;Ibrahim, A.
    • Structural Engineering and Mechanics
    • /
    • v.61 no.1
    • /
    • pp.125-142
    • /
    • 2017
  • Extensive research work has been performed on shear strengthening of reinforced concrete (RC) beams retrofitted with externally bonded carbon fiber reinforced polymer (CFRP) in form of strips. However, most of this research work is experimental and very scarce studies are available on numerical modelling of such beams due to truly challenging nature of modelling concrete shear cracking and interfacial interaction between components of such beams. This paper presents an appropriate model for RC beam and to simulate its cracking without numerical computational difficulties, convergence and solution degradation problems. Modelling of steel and CFRP and their interfacial interaction with concrete are discussed. Finally, commercially available non-linear finite element software ABAQUS is used to validate the developed finite element model with key tests performed on full scale T-beams with and without CFRP retrofitting, taken from previous extensive research work. The modelling parameters for bonding behavior of CFRP with special anchors are also proposed. The results presented in this research work illustrate that appropriate modelling of bond behavior of all the three types of interfaces is important in order to correctly simulate the shear behavior of RC beams strengthened with CFRP.

Capacity Development of Existing Frame by Aramid Sheet and Energy Dissipation Device (아라미드 시트와 에너지 소산 장치에 의한 기존 골조의 능력 향상)

  • Lee, Hyun-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.5
    • /
    • pp.112-119
    • /
    • 2015
  • In this paper, the strengthening method was proposed for improving the seismic performance of the vulnerable structural frames. To improve the brittle characteristics of columns, aramid fiber sheet was used for the lateral confinement of columns. And to introduce the energy dissipation capacity, a steel damper with S-shaped struts was installed. By making the unreinforced and reinforced specimens with full size specimens were evaluated for lateral load resistance capacity. It was confirmed the strengthening effects by the evaluation of failure shape, strength, stiffness degradation, and energy dissipation capacity. Also from the FE analysis using ABAQUS, the hysteretic behavior of the specimens were predicted and evaluated.

Electrical Insulation Characteristics of Insulators in Cryogenic Liquid for a HTS Apparatus (고온초전도 기기를 위한 극저온 액체 중 절연물의 전기적 특성)

  • Baek, Seung-Myeong;Kwag, Dong-Soon;Cheon, Hyeon-Gweon;Choi, Jae-Hyeong;Kim, Sang-Hyun;Kim, Hyun-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.263-264
    • /
    • 2006
  • For practical electrical insulation design of high temperature superconducting (HTS) power apparatuses, knowledge of the dielectric behavior of insulators in cryogenic liquid such as liquid nitrogen ($LN_2$) is essential. So in this paper, we discussed experimental investigations of breakdown and V-t characteristics of several insulators such as Kapton and glass fiber reinforced plastic (GFRP) that are candidates of insulator for HTS apparatus in cryogenic liquid. And we investigated the degradation of these insulation samples after breakdown with the microscope and SEM photograph. Moreover, survival and hazard analysis were performed.

  • PDF

Chemical and micromorphological changes of archaeological waterlogged wood degraded in marine situations. (해양에서 열화된 완도선 수침고목재의 화학적.미시형태적 변화)

  • Kim, Ik-Joo
    • 보존과학연구
    • /
    • s.11
    • /
    • pp.87-105
    • /
    • 1990
  • Chemical and micro morphological changes of archaeological waterlogged woods from shipwrecked materials in marine situations were investigated which were submerged in seabed for over 900 years. Tested Wood species were Pinusdensiflora, Zelkova serrata, Quercus acutissima and Camellia japonica. The obtained results were summarized as follows; Chemical analysis showed that lignin content was increased, whereas the amout of holocellulose was heavily decreased in the degraded archaeological lwoods(DAW), when compared to the recent woods. The amount of alkalineextractives in the DAW was extremley high. IR spectra showed that disappearance of absortion band at $1,730㎝^-1$ intensity increase at 1,600, 1,500 and $1,270㎝^-1$ and the emergence of single band around $1,050㎝^-1$.Microscopic investigation showed that cell wall of latewood tracheids and fiber in the DAW were severely degraded while, early wood tracheids less degraded. Degradation in the cell wall was mainley occurred in $S_2$layer, while the middle lamella was the least degraded. The micro morphological characteristics of DAW were separation of secondary wall from middle lamella, cavities aligned with micro fibril angle in $S_2$layer and granular appearance of secondary wall by the bacterial attack.

  • PDF

Development of multipurpose seed paper from waste paper(II) - Focused on field test of manufactured seed paper - (폐지를 이용한 기능성 육묘지의 제조(제2보) - 육묘지 적성 시험 -)

  • Eom, Tae-Jin;Park, Soung-Bae
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.39 no.1 s.119
    • /
    • pp.30-37
    • /
    • 2007
  • The seed paper was used in farm field recently for a sound young plant. The most of seed paper are made of synthetic non-woven sheet. Therefore, it is very difficult to bio-degrade in soil and is very hard to have some special function, for example keeping herbicide and/or insecticide activity because of its lack of chemical acceptability. The purpose of this research is manufacture of seedling paper which have a function of herbicide activity from waste paper. The fiber properties from waste paper were remarkably improved by fine removal with washing and/or flotation process. The paper-making ability for seed paper was enhanced with enzyme treatment of secondary fibers. The paper for seedling must have a good bio-degradation ability in soils. The absorption amount of chemical like as dithiopyr was increased remarkably in enzyme treated base paper. The embossing treatment of base paper was very effective for seed attachment and chemicals retention. And also, the developed seed paper showed a good penetration property of young root through embossed paper.

Distributed plasticity approach for nonlinear analysis of nuclear power plant equipment: Experimental and numerical studies

  • Tran, Thanh-Tuan;Salman, Kashif;Kim, Dookie
    • Nuclear Engineering and Technology
    • /
    • v.53 no.9
    • /
    • pp.3100-3111
    • /
    • 2021
  • Numerical modeling for the safety-related equipment used in a nuclear power plant (i.e., cabinet facilities) plays an essential role in seismic risk assessment. A full finite element model is often time-consuming for nonlinear time history analysis due to its computational modeling complexity. Thus, this study aims to generate a simplified model that can capture the nonlinear behavior of the electrical cabinet. Accordingly, the distributed plasticity approach was utilized to examine the stiffness-degradation effect caused by the local buckling of the structure. The inherent dynamic characteristics of the numerical model were validated against the experimental test. The outcomes indicate that the proposed model can adequately represent the significant behavior of the structure, and it is preferred in practice to perform the nonlinear analysis of the cabinet. Further investigations were carried out to evaluate the seismic behavior of the cabinet under the influence of the constitutive law of material models. Three available models in OpenSees (i.e., linear, bilinear, and Giuffre-Menegotto-Pinto (GMP) model) were considered to provide an enhanced understating of the seismic responses of the cabinet. It was found that the material nonlinearity, which is the function of its smoothness, is the most effective parameter for the structural analysis of the cabinet. Also, it showed that implementing nonlinear models reduces the seismic response of the cabinet considerably in comparison with the linear model.

Composite components damage tracking and dynamic structural behaviour with AI algorithm

  • Chen, Z.Y.;Peng, Sheng-Hsiang;Meng, Yahui;Wang, Ruei-Yuan;Fu, Qiuli;Chen, Timothy
    • Steel and Composite Structures
    • /
    • v.42 no.2
    • /
    • pp.151-159
    • /
    • 2022
  • This study discusses a hypothetical method for tracking the propagation damage of Carbon Reinforced Fiber Plastic (CRFP) components underneath vibration fatigue. The High Cycle Fatigue (HCF) behavior of composite materials was generally not as severe as this of admixture alloys. Each fissure initiation in metal alloys may quickly lead to the opposite. The HCF behavior of composite materials is usually an extended state of continuous degradation between resin and fibers. The increase is that any layer-to-layer contact conditions during delamination opening will cause a dynamic complex response, which may be non-linear and dependent on temperature. Usually resulted from major deformations, it could be properly surveyed by a non-contact investigation system. Here, this article discusses the scanning laser application of that vibrometer to track the propagation damage of CRFP components underneath fatigue vibration loading. Thus, the study purpose is to demonstrate that the investigation method can implement systematically a series of hypothetical means and dynamic characteristics. The application of the relaxation method based on numerical simulation in the Artificial Intelligence (AI) Evolved Bat (EB) strategy to reduce the dynamic response is proved by numerical simulation. Thermal imaging cameras are also measurement parts of the chain and provide information in qualitative about the temperature location of the evolution and hot spots of damage.

Fabrication and Evaluation of Thin Film Filter Type 4-Channel Wavelength Division Multiplexing Device (박막필터형 4- 채널 파장분할 다중화 소자의 제작 및 평가)

  • Park, Kyung Hyun;Seo, Wan Seok;Chung, Young Man;Park, Hee Gap;Ma, Dong Sung;Kang, Min Ho
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.24 no.3
    • /
    • pp.400-407
    • /
    • 1987
  • Thin film filter type 4-channel wavelength division multiplexing(WDM) device was designed and fabricated for the application in optical subscriber loop system. It has multi-mode fiber pigtails and four wavelength division consisting of 0.81, 0.89, 1.2 and 1.3 um. The evaluated performances are 1-2d B of insertion loss(connector loss excluded)and 30-35d B of crosstalk attenuation for all channels. The performance of the fabricated device was tested in the wideband optical transmission experiment, where the SNR degradation due to the crosstalk of the device was found to be within a measurement error.

  • PDF

Parametric study of the energy absorption capacity of 3D-printed continuous glass fiber reinforced polymer cruciform honeycomb structure

  • Hussain Gharehbaghia;Amin Farrokhabadi
    • Steel and Composite Structures
    • /
    • v.49 no.4
    • /
    • pp.393-405
    • /
    • 2023
  • In this paper, the energy absorption capability of a novel cruciform composite lattice structure was evaluated through the simulation of compression tests. For this purpose, several test samples of Polylactic acid cellular reinforced with continuous glass fibers were prepared for compression testing using the additive manufacturing method of material extrusion. Using a conventional path design for material extrusion, multiple debonding is probable to be occurred at the joint regions of adjacent cells. Therefore, an innovative printing path design was proposed for the cruciform lattice structure. Afterwards, quasistatic compression tests were performed to evaluate the energy absorption behaviour of this structure. A finite element model based on local material property degradation was then developed to verify the experimental test and extend the virtual test method. Accordingly, different combinations of unit cells' dimensions using the design of the experiment were numerically proposed to obtain the optimal configuration in terms of the total absorbed energy. Having brilliant energy absorption properties, the studied cruciform lattice with its optimized unit cell dimensions can be used as an energy absorber in crashworthiness applications. Finally, a cellular structure will be suitable with optimal behavior in crush load efficiency and high energy absorption.