• Title/Summary/Keyword: Fiber Coating

Search Result 369, Processing Time 0.023 seconds

Implementation of a system for detecting defects on optical fiber coating (Vision System을 이용한 광섬유 코팅 결함 검출 System 구현)

  • 서상일;최우창;김학일
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.796-799
    • /
    • 1996
  • 광섬유는 코어(Core), 클레드(Clad), 그리고 1,2차 코팅(Coating)으로 구성되어 있다. 본 연구에서는 광섬유의 코팅에 생기는 결함의 유무 및 종류와 크기를 분류하는 Vision System을 구현하였다. 전처리 과정으로, CCD Camera를 이용하여 얻은 화상에 대하여 Sobel 연산자로 경계선을 추출하고, 문턱값(Threshold Value)을 적용하여 이진 화상을 만든다. 외경 정보 추출을 위하여, 투영 정보, 수리 형태학(Mathematical Morphology)적 연산을 수행하고, 결함의 종류와 크기를 효율적으로 분류하도록 Tree Classifier를 설계하였다. 실험 결과로서 각 결함 별 오차율, 전체 오차율(Total Error Rate)등을 제시하였다.

  • PDF

The Effect of Penetrating Agent and Fluorosilane on High Temperature Teflon Coating (침투제와 불소화실란이 고온용 테프론 코팅에 미치는 영향)

  • Lee, Soo;Seong, Eun-Suk
    • Journal of the Korean Applied Science and Technology
    • /
    • v.30 no.4
    • /
    • pp.672-678
    • /
    • 2013
  • Although the basalt fiber has superior fire-resistance and chemical resistance, it has many disadvantages in its applications. Generally, the tensile and loop strengths of basalt fiber were decreased with generated frictional heat during industial appplications. To solve this problem, polytetrafluoroethylene (PTFE) coating system was introduced and a sutable coating condition was evaluated. The basalt fiber was pre-treated with triethoxytrifluoropropylsilane (TMTFPS) at various pHs and then coated with PTFE dispersions with penetrating agent sodium bis(2-ethylhexyl)sulfo succinate (DOS-Na) to increase the tensile and loop strengths as well as to reduce the fibril during working. A universial testing machine (Instron Model 3366) was used to measure tensile and loop strengths. When the PTFE dispersion with 0.25 wt% of DOS-Na was coated on the surface of basalt fiber after pre-treating with 5 wt% of PTFE, the highest tensile and loop strengths were reached to 3.5 gf/D and 2.4 gf/D, respectively.

Evaluation on Spalling Properties of Specimen Size with PP Fiber and Fireproof Coating

  • Kim, Gyu-Yong;Min, Choong-Siek;Lee, Tae-Gyu;Miyauchi, Hiroyuki;Park, Gyu-Yeon;Lee, Gwang-Jun
    • Journal of the Korea Institute of Building Construction
    • /
    • v.11 no.4
    • /
    • pp.353-362
    • /
    • 2011
  • High Strength Concrete (HSC) has weakness that in a fire, it is spalled and brittles. The phenomenon of spalling is made by water vapor's being confined in watertight concrete. This study is aimed to evaluate explosive spalling properties of high strength concrete with ${\square}100{\times}100{\times}200$ mm specimen and ${\square}400{\times}400{\times}1500$ mm column. To prevent spalling of concrete, fireproof coating and PP fiber are used. As a result, ${\square}400{\times}400{\times}1500$ mm column was prevented spalling likes ${\times}100{\times}100{\times}200$ mm specimen. When concrete protected failure to explosive spalling, quantity heat ratio (which fireproof coating specimen to pp fiber mixed specimen) between ${\square}100{\times}100{\times}200$ mm and ${\square}400{\times}400{\times}1500$ mm was maximum value at 20 minute, but difference of quantity heat ratio decreased and quantity heat ratio of each specimen is almost same at 30 minute.

THERMO-FLUID ANALYSIS ON THE HELIUM INJECTION COOLING OF GLASS FIBER FOR HIGH SPEED OPTICAL FIBER MANUFACTURING (광섬유 고속생산용 헬륨 주입식 유리섬유 냉각공정에 대한 열유동 해석)

  • Oh, I.S.;Kim, D.;Kwak, H.S.;Kim, K.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.92-95
    • /
    • 2011
  • In manufacturing optical fibers, the process starts with the glass fiber drawing from the heated and softened silica preform in the furnace, and the freshly drawn glass fiber is still at high temperature when it leaves the glass fiber drawing furnace. It is necessary to cool down the glass fiber to the ambient temperature before it then enters the fiber coating applicator, since the hot glass fiber is known to cause several technical difficulties in achieving high quality fiber coating. As the fiber drawing speed keeps increasing, a current manufacturing of optical fibers requires a dedicated cooling unit with helium gas injection. A series of three-dimensional flow and heat transfer computations are carried out to investigate the effectiveness of fiber cooling in the fiber cooling unit. The glass fiber cooling unit is simplified into the long cylindrical enclosure at which the hot glass fiber passes through at high speed, and the helium is being supplied through several injection slots of rectangular shape along the cooling unit. This study presents and discusses the effects of helium injection rates on the glass fiber cooling rates.

  • PDF

Development of Functional Textile Material by Using Chitosan 1. Preparation and Characterization of Chitosan Fiber and Chitosan Fiber Coated with S-carboxymethyl Keratein (키토산을 이용한 기능성 소재 개발 1. 키토산 섬유와 S-카르복시메틸케라틴 코팅 키토산 섬유의 제조와 특성)

  • 민경혜;신윤숙
    • Textile Coloration and Finishing
    • /
    • v.11 no.3
    • /
    • pp.32-40
    • /
    • 1999
  • Chitosan fiber was prepared by wet spinning with various draw ratio. Chitosan fiber was coated with f-carboxymethyl keratein(SCMK) by extruding chitosan solution into 1 M NaOH solution containing 1% SCMK. Among three chitosan used in this study(chitosans of 5 cps, 50 cps, 100 cps), 50 cps chitosan gave the best tenacity and optimum concentration was 5%. SCMK coating increased the tenacity of chitosan fiber. Regardless of SCMK coating, tenacity and elongation of both chitosan fibers were increased with the increase of draw ratio. Chitosan fiber showed antimicrobial activity against Staphyloccus aureus showing 66∼72% of bacteria reduction rates. On the other hand, chitosan fiber coated with SCMK didn't show any antimicrobial activity.

  • PDF

Fabrication of Carbon Fiber Reinforced Reaction Bonded SiC Composite Fabricated by a Molten Si Infiltration Method; I. The Effect of Carbon Fiber Coating Process (용융 Si 침윤법에 의해 제조된 반응소결 탄소 섬유강화 탄화규소 복합체 제조; I. 탄소 섬유 코팅 방법에 따른 영향)

  • Yun, Sung-Ho;Tan, Phung Nhut;Cho, Gyung-Sun;Cheong, Hun;Kim, Young-Do;Park, Sang-Whang
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.9
    • /
    • pp.531-536
    • /
    • 2008
  • Reaction bonded silicon carbide (RBSC) composite for heat-exchanger was fabricated by molten Si infiltration method. For enforcing fracture toughness to reaction bonded silicon carbide composite, the surface of carbon fiber has coating layer by SiC or pyro-carbon. For SiC layer coating, CVD method was used. And for carbon layer coating, the phenol resin was used. In the case of carbon layer coating, fracture toughness and fracture strength were enhancing to 4.4 $MPa{\cdot}m^{1/2}$ and 279 MPa.

COMPUTATIONAL ANALYSIS ON THE COOLING PERFORMANCE OF GLASS FIBER COOLING UNIT WITH HELIUM GAS INJECTION (헬륨가스 주입식 유리섬유 냉각장치의 냉각성능 해석)

  • Oh, I.S.;Kim, D.;Umarov, A.;Kwak, H.S.;Kim, K.
    • Journal of computational fluids engineering
    • /
    • v.16 no.4
    • /
    • pp.110-115
    • /
    • 2011
  • A modern optical fiber manufacturing process requires the sufficient cooling of glass fibers freshly drawn from the heated and softened silica preform in the furnace, since the inadequately cooled glass fibers are known to cause improper polymer resin coating on the fiber surface and to adversely affect the product quality of optical fibers. In order to greatly enhance the fiber cooling effectiveness at increasingly high fiber drawing speed, it is necessary to use a dedicated glass fiber cooling unit with helium gas injection between glass fiber drawing and coating processes. The present numerical study features a series of three-dimensional flow and heat transfer computations on the cooling gas and the fast moving glass fiber to analyze the cooling performance of glass fiber cooling unit, in which the helium is supplied through the discretely located rectangular injection holes. The air entrainment into the cooling unit at the fiber inlet is also included in the computational model and it is found to be critical in determining the helium purity in the cooling gas and the cooling effectiveness on glass fiber. The effects of fiber drawing speed and helium injection rate on the helium purity decrease by air entrainment and the glass fiber cooling are also investigated and discussed.

Research on residual stress in SiCf reinforced titanium matrix composites

  • Qu, Haitao;Hou, Hongliang;Zhao, Bing;Lin, Song
    • Steel and Composite Structures
    • /
    • v.17 no.2
    • /
    • pp.173-184
    • /
    • 2014
  • This study aimed to theoretical calculate the thermal residual stress in continuous SiC fiber reinforced titanium matrix composites. The analytical solution of residual stress field distribution was obtained by using coaxial cylinder model, and the numerical solution was obtained by using finite element model (FEM). Both of the above models were compared and the thermal residual stress was analyzed in the axial, hoop, radial direction. The results indicated that both the two models were feasible to theoretical calculate the thermal residual stress in continuous SiC fiber reinforced titanium matrix composites, because the deviations between the theoretical calculation results and the test results were less than 8%. In the titanium matrix composites, along with the increment of the SiC fiber volume fraction, the longitudinal property was improved, while the equivalent residual stress was not significantly changed, keeping the intensity around 600 MPa. There was a pronounced reduction of the radial residual stress in the titanium matrix composites when there was carbon coating on the surface of the SiC fiber, because carbon coating could effectively reduce the coefficient of thermal expansion mismatch between the fiber and the titanium matrix, meanwhile, the consumption of carbon coating could protect SiC fibers effectively, so as to ensure the high-performance of the composites. The support of design and optimization of composites was provided though theoretical calculation and analysis of residual stress.

Development of a Drill Tool for CFRP Machining and Evaluation of Drilling Processing (탄소섬유 강화 복합재 가공용 드릴 공구 개발 및 홀 가공성 평가)

  • Sa, Min-Woo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.3
    • /
    • pp.8-13
    • /
    • 2020
  • Carbon fiber-reinforced plastics (CFRPs) are extremely strong and light fiber-reinforced plastics containing carbon fibers. CFRPs can be expensive to produce, but are commonly used wherever high strength-to-weight ratio and rigidity are required, such as in the aerospace, automotive, and ship superstructure industries. In CFRP drilling, the tool performance greatly varies depending on the tool shapes, cutting conditions, and diamond coating. This study developed a new type of tungsten carbide drill with multi-blade edges to evaluate the surface quality of CFRP materials according to the coating thickness of diamond-coated drills. Experiments on tool wear, surface roughness, and burr formation were conducted. The bore exit quality of a 12 mμ -coated drill was better than that of a 6 mμ -coated drill. The superior effects of the 12 mμ -coated drill and the good surface quality of CFRP were also demonstrated.

Analysis of Light Traits in a Solar Light-collector Device and its Effects on Lettuce Growth at an Early Growth Stage (태양광 집광장치의 광 특성분석 및 유묘기 상추의 생장에 미치는 영향)

  • Lee, Sanggyu;Lee, Jaesu;Won, Jinho
    • Journal of Environmental Science International
    • /
    • v.28 no.11
    • /
    • pp.1019-1025
    • /
    • 2019
  • The aim of this study was to analyze the light traits in a solar light-collector device and its effects on lettuce growth at an early growth stage. The three hyper parameters used were the reflector diameter (2 cm and 4 cm), coating inside the reflector (chrome-coated, non-coated) and distance from the light fiber (15 cm and 20 cm). The results showed that light efficiency, which is the ratio of light intensity inside the fiber to the solar intensity, improved by 41.1 % when using a 2 cm diameter chrome-coated reflector at a distance of 15 cm from the light fiber; whereas it only improved by 20.6% when a non-coated reflector was used. As the reflector size was increased to 4 cm, the light efficiency for the coated and non-coated reflectors increased by 28.5 % and 26.4 %, respectively, hence, no significant difference was observed. When the light fiber was placed at a distance of 20 cm, the increase in light efficiency with coating treatment was 8 % higher than without coating treatment. We also compared the efficiency of light-fiber treatment with that of LED treatment in our lettuce nursery, and observed that the plants exhibited better growth with light-fiber treatment. We observed an average increase of 1.7 cm in leaf height, $7cm^2/plant$ increase in leaf area, and 32 mm increase in root length upon light-fiber treatment as opposed to those observed with LED treatment. These findings indicate that the collector light-fiber is economically feasible and it improves lettuce growth compared with the LED treatment.