• Title/Summary/Keyword: Fetal monitoring

Search Result 39, Processing Time 0.028 seconds

Development and Effects of Supplementary Material about Electronic Fetal Monitoring for Nursing Students (간호대학생을 위한 전자태아감시 자가학습 교재의 개발 및 적용효과)

  • Yeom, Gye Jeong;Kim, Il-OK
    • Women's Health Nursing
    • /
    • v.22 no.1
    • /
    • pp.21-29
    • /
    • 2016
  • Purpose: This study aimed to develop supplementary material about the electronic fetal monitoring for nursing students, and to test the effects on electronic fetal monitoring related knowledge and confidence on nursing performance in delivery room. Methods: Totally 58 nursing students were recruited either experimental group (n=30) or a control group (n=28). A non-equivalent control group pretest-posttest design was employed to test the effects on fetal monitoring related knowledge and confidence on nursing performance in delivery room. The supplementary material about the electronic fetal monitoring was developed based on Analysis, Design, Development, Implement and Evaluation (ADDIE) model. Fetal monitoring related knowledge and confidence on nursing performance in delivery room were self-reported by the scales that author developed. Data were collected at pre-test and after the 6-week intervention. Results: There was significant difference in confidence on nursing performance in delivery room between two groups after intervention. Conclusion: These findings suggest the importance of the supplementary material about the electronic fetal monitoring for nursing students to improve confidence on nursing performance in delivery room.

Development and Clinical Application of Central Fetal Monitoring System with Visual Maternal Monitoring function based on Personal Computer (산모 영상감시 겸용 중앙집중식 태아 전자감시 시스템의 개발 및 임상적 응용)

  • Jun, John-B.;Lee, H.C.;Yoon, H.J.;Yang, S.I.;Kim, Y.M.;Lee, I.S.;Kim, Y.T.;Kim, A.;Nam, J.H.;Mok, J.E.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1993 no.11
    • /
    • pp.40-43
    • /
    • 1993
  • Electronic fetal monitoring system is an easier ar d usual method in various prenatal and labor period fetal surveilence methods currently in use. But there haven't been enough cases of using the central monitoring system despite the fact that the bedside fetal monitoring system have already been widely in use in Korea as an essential medical equipment item. We have developed more efficient central fetal monitoring system based on the personal computer with the visual maternal monotoring device using infrared camera which processes the signals from existing bedside fetal monitoring systems such as H/P's 8040 series. And we have performed the clinical application on 41 pregnant women and the results were satisfactory. In conclusion, more efficient and familial fetal monitoring is possible with our PC based central fetal monitoring system which provides the medical personnel with the view of a selected pregnant woman on the same screen where the electronic waveforms and data are displayed.

  • PDF

Development of a Fetal Heart Rate Detection Algorithm using Phonogram (포노그램을 이용한 태아 심박률 검출 알고리즘의 개발)

  • Kim, Dong-Jun;Kang, Dong-Kee
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.51 no.4
    • /
    • pp.167-174
    • /
    • 2002
  • This study describes a fetal heart rate(FHR) estimation algorithm using phonogram. Using a phonogram amplifier, various fetal heart sounds are collected in a university hospital. The FHR estimation algorithms consists of a lowpass filter, decimation, envelop detection, pitch detection, and post-processing. The post-processing is the FHR decision procedure using all informations of fetal heart rates. Using the algorithm and other parameters of fetal heart sound, a fetal monitoring software was developed. This can display the original signals, the FFT spectra, FHR and its trajectory. Even though the fetal phonogram amplifier detects the fetal heart sounds well, the sound quality is not so good as the ultrasonography. In case of very week fetal heart sound, autocorrelation of it showed clear periodicity. But two main peaks in one period is an obstacle in pitch detection and peaks are not so vivid. The proposed FHR estimation algorithm showed very accurate and stable results. Since the developed software displays multiple parameters in real time and has convenient functions, it will be useful for the phonogram-style fetal monitoring device.

A Study on the Separation of Fetal ECG from a Single Channel Abdominal ECG (단일채널 복부 심전도를 통한 태아 심전도 분리)

  • Park Kwang-Li;Lee Kyoung-Joung;Lee Jeon
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.54 no.3
    • /
    • pp.198-205
    • /
    • 2005
  • In this paper, we proposed a new algorithm for the separation of fetal ECG from single channel abdominal ECG. The algorithm consists of a stage of demixing vector calculation for initial signal and a stage of fetal beat detection for the rest of signal. The demixing vector was obtained by applying independent component analysis technique to projected signals into time-frequency domain. For the test of this algorithm, simulation signals, De Lathauwer's data and some measured data, which was acquired from 8 healthy volunteers whose pregnant periods ranged from 22 weeks to 35 weeks and whose ages from 27 to 37, were used. For each data, the accuracy of fetal beat detection was $100\%$ and with the location of fetal beats, fetal heart rate variability and morphology could be offered. In conclusion, this proposed algorithm showed the possibility of fetal beat separation with a single channel abdominal ECG and it might be adopted to a fetal health monitoring system, by which a single channel abdominal ECG is acquired.

Development of Electronic Stethoscope System for Fetal Phonogram (태아 포노그램을 위한 전자청진장치의 개발)

  • Kim, Dong-Jun
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.2 no.3
    • /
    • pp.9-15
    • /
    • 2009
  • During delivery, fetal death rate is about 1%. Since fetal death or infection have been continuously occurred, low cost fetal monitoring techniques are required. This study proposes an electronic stethoscope system for fetal phonogram by developing an amplifier to detect fetal movement and heart sound from abdomen of the pregnant woman. Using the electronic stethoscope, it is possible to listen or record the fetal sound and to analyze or store the digitized signal. Through the performance test using the developed system with 30 pregnant women in university hospital, it was found that the developed amplifier showed low noise, high performance. The system can detect heart sound and periods of heartbeats of a 22-week fetus.

  • PDF

A Study on The Davelopement of Electronic Fetal Heart Rate Monitoring System Using Personal Computer (개인용 컴퓨터를 이용한 전자 태아심음 감시장치의 개발에 관한 연구)

  • 정지환;김선일
    • Journal of Biomedical Engineering Research
    • /
    • v.12 no.3
    • /
    • pp.209-214
    • /
    • 1991
  • Digital fetal monitoring system based on the personal computer combined with the digital signal processing (DSP) board was implemented. The DSP board acquires and digitally processes ultra- sound fetal Doppler signal for digital signal conditioning, rectification, low -pass filtering, autocorrealtion function calculation and its peak detection. The personal computer interfaced with the DSP board is in charge of graphic display, hardcopy, data transmission and on -line analysis of fetal heart rate change including on - line warning system, base -line estmation, acceleration, deceleration and variability. It is one of the most suitable situation to apply the DSP chip for siganl conditioning, digital filtering of ultrasound fetal Dopier signal and fetal heart rate estimation using autocorrelation technique .

  • PDF

The development of Fetal Heart Rate monitoring system based on DSP processor (DSP 프로세서를 이용한 태아심음 및 자궁수축감시장치의 개발)

  • Jnag, D.P.;Kim, K.H.;Lee, Y.H.;Lee, Y.K.;Bak, M.I.;Lee, D.S.;Kim, S.I.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1996 no.05
    • /
    • pp.320-324
    • /
    • 1996
  • Digital fetal monitoring system based on the personal computer combined with the digital signal processing board was implemented. The DSP board acquires and digitally processes ultrasound fetal Doppler signal for digital rectification, FIR filtering, autocorrelation function calculation, its peak detection and MEDIAN filtering. The personal computer interfaced with the DSP board is in charge of graphic display, hardcopy, data transmission and on-line analysis of fetal heart rate change including and variability. I used a recursive technique for autocorrelation function computation method and MEDIAN filter which can greatly reduce the amount of calculation and accuracy. I also implemented analysis algorithm of fetal heart rate change based on normal fetal sample data in order to exact diagnosis.

  • PDF

Effect of Cellular Phone on Fetal Heart Rate Patterns

  • Jafarabadi, Mina;Jafarabadi, Ladan
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.181-184
    • /
    • 2004
  • There are reports showing that electromagnetic fields (EMFs) emitted at non-thermal levels may be associated with biological alterations in target cells. In this study it is objected to assess the potential influences of EMFs produced by cellular phones on fetal heart rate. Non Stress Test (NST) is a widely used method of fetal monitoring and assessing fetal health and well-being. Sixty volunteers with uncomplicated term pregnancies were studied by a Spacelabs AM-67 Doppler ultrasound monitor. Fetal Heart Rate recordings were obtained while there were no Cellular Phone around for 10 minutes. Afterwards, all patients were exposed to EMFs for 10 minutes. NST was performed while they were holding the CP on stand-by mode and then on dialing mode, each for 5 minutes. The recordings were analyzed with respect to baseline heart rate, accelerations and decelerations. The Wilcoxon matched-pairs signed-ranks test was used to compare these variables. The results indicate that EMFs emitted by CP do not cause any demonstrable effects on baseline FHR, acceleration or deceleration.

  • PDF