• Title/Summary/Keyword: Fetal bovine serum(FBS)

Search Result 166, Processing Time 0.025 seconds

Optimizing hormonal and amino acid combinations for enhanced cell proliferation and cell cycle progression in bovine mammary epithelial cells

  • Hyuk Cheol Kwon;Hyun Su Jung;Do Hyun Kim;Jong Hyeon Han;Seo Gu Han;Dong Hyun Keum;Seong Joon Hong;Sung Gu Han
    • Animal Bioscience
    • /
    • v.36 no.11
    • /
    • pp.1757-1768
    • /
    • 2023
  • Objective: The number of bovine mammary epithelial cells (BMECs) is closely associated with the quantity of milk production in dairy cows; however, the optimal levels and the combined effects of hormones and essential amino acids (EAAs) on cell proliferation are not completely understood. Thus, the purpose of this study was to determine the optimal combination of individual hormones and EAAs for cell proliferation and related signaling pathways in BMECs. Methods: Immortalized BMECs (MAC-T) were treated with six hormones (insulin, cortisol, progesterone, estrone, 17β-estradiol, and epidermal growth factor) and ten EAAs (arginine, histidine, leucine, isoleucine, threonine, tryptophan, lysine, methionine, phenylalanine, and valine) for 24 h. Results: Cells were cultured in a medium containing 10% fetal bovine serum (FBS) as FBS supplemented at a concentration of 10% to 50% showed a comparable increase in cell proliferation rate. The optimized combination of four hormones (insulin, cortisol, progesterone, and 17β-estradiol) and 20% of a mixture of ten EAAs led to the highest cell proliferation rate, which led to a significant increase in cell cycle progression at the S and G2/M phases, in the protein levels of proliferating cell nuclear antigen and cyclin B1, cell nucleus staining, and in cell numbers. Conclusion: The optimal combination of hormones and EAAs increased BMEC proliferation by enhancing cell cycle progression in the S and G/2M phases. Our findings indicate that optimizing hormone and amino acid levels has the potential to enhance milk production, both in cell culture settings by promoting increased cell numbers, and in dairy cows by regulating feed intake.

Development a Following of Serum Addition In Vitro Culture and Embryo Transfer (체외 배양액의 조성과 혈청의 첨가가 한우 체외 수정란의 발달과 임신율에 미치는 효과)

  • Choi, Soo-Ho;Park, Yong-Soo;Lee, Joon-Hee;Kang, Tae-Yeong;Kim, Joo-Heon;Rho, Gyu-Jin
    • Journal of Embryo Transfer
    • /
    • v.23 no.1
    • /
    • pp.51-57
    • /
    • 2008
  • The present study investigated the efficient methods to produce in vitro Hanwoo embryos, and to improve the pregnancy rate. The developmental rate, total cell number and ICM ratio of in vitro embryos were compared amongst different culture media. Comparisons were also made on the status of recipients, pregnancy rate along with day of transfer after the estrus. Development of embryos into blastocyst stage in IVMD101 supplemented with 5% fetal bovine serum (FBS) group was significantly higher (34.2%) than that of TCM-199 supplemented with 5% FBS (26.8%) and IVMD101 without FBS (25.9%) (p<0.05). The development rate to blastocyst stage was significantly faster in IVMD101(5% FBS) than that of other groups ($0.2{\sim}2.3%$) (p<0.05). The average number of inner cell mass and trophectoderm were similar among treatment groups, which were $36.0{\sim}44.7$ and $83.3{\sim}106.7$. However, total cell number in IVMD101(5% FBS and 0% FBS) was significantly higher than that of TCM199(5% FBS). There were no differences in the pregnancy rate among treatment groups (32.0%, 33.9% and 28.6%, respectively). However, the pregnancy rate of Day 6 embryos cultured in IVMD101(5% FBS) was significantly (p<0.01) higher than IVMD101 without FBS and TCM-199 + 5% FBS (38.0% vs. 17.2% and 32.4%, respectively). No significant difference was observed for the pregnancy rate between heifer and cow transferred with Day 6 embryos cultured in IVMD 101(5% FBS) (42.7% and 39.3%, respectively). However, there was a significant difference of pregnancy rate (p<0.05) in heifer between one and two embryos transferred (31.4% and 41.9%). There was no difference of pregnancy rate among transfer days after estrus between heifer and cow, but the pregnancy rate of transfer to heifer with day 6 after estrus was significantly higher (p<0.05) than that of day 7 and 8 (22.2% vs. 49.0% and 38.7% respectively). Based on the above findings, there is a possibility to produce in vitro produced embryos cultured in IVMD101(5% FBS) showed higher blastocyst rate and the increased cell number. In terms of the pregnancy rate of in vitro produced embryos, the highest pregnancy rate was observed when two embryos were cultured in IVMD101(5% FBS) and transferred.

The Comparison of Commercial Serum-Free Media for Hanwoo Satellite Cell Proliferation and the Role of Fibroblast Growth Factor 2

  • In-sun Yu;Jungseok Choi;Mina K. Kim;Min Jung Kim
    • Food Science of Animal Resources
    • /
    • v.43 no.6
    • /
    • pp.1017-1030
    • /
    • 2023
  • Fetal bovine serum (FBS), which contains various nutrients, comprises 20% of the growth medium for cell-cultivated meat. However, ethical, cost, and scientific issues, necesitates identification of alternatives. In this study, we investigated commercially manufactured serum-free media capable of culturing Hanwoo satellite cells (HWSCs) to identify constituent proliferation enhancing factors. Six different serum-free media were selected, and the HWSC proliferation rates in these serum-free media were compared with that of control medium supplemented with 20% FBS. Among the six media, cell proliferation rates were higher only in StemFlexTM Medium (SF) and Mesenchymal Stem Cell Growth Medium DXF (MS) than in the control medium. SF and MS contain high fibroblast growth factor 2 (FGF2) concentrations, and we found upregulated FGF2 protein expression in cells cultured in SF or MS. Activation of the fibroblast growth factor receptor 1 (FGFR1)-mediated signaling pathway and stimulation of muscle satellite cell proliferation-related factors were confirmed by the presence of related biomarkers (FGFR1, FRS2, Raf1, ERK, p38, Pax7, and MyoD) as indicated by quantitative polymerase chain reaction, western blotting, and immunocytochemistry. Moreover, PD173074, an FGFR1 inhibitor suppressed cell proliferation in SF and MS and downregulated related biomarkers (FGFR1, FRS2, Raf1, and ERK). The promotion of cell proliferation in SF and MS was therefore attributed to FGF2, which indicates that FGFR1 activation in muscle satellite cells may be a target for improving the efficiency of cell-cultivated meat production.

Adhesion Behavior of Chondrocyte and Osteoblast on Surface-Modified Biodegradable PLLA Films and Scaffolds (표면개질된 생분해성 PLLA 필름 및 지지체의 연골세포와 조골세포 점착거동)

  • Choi, Ji-Yeon;Jung, Hyun-Jung;Park, Bang-Ju;Joung, Yoon-Ki;Park, Kwi-Deok;Han, Dong-Keun
    • Polymer(Korea)
    • /
    • v.36 no.3
    • /
    • pp.357-363
    • /
    • 2012
  • Surface-modified poly(L-lactic acid) (PLLA) films and scaffolds were treated with plasma discharge in oxygen gas and subsequently subjected to $in$ $situ$ grafting of acrylic acid (AA) in order to increase the cell compatibility. The surface of AA-grafted PLLA was converted to hydroxyapatite (HA)-deposited PLLA in stimulated body fluid (SBF). After the samples were immersed in phosphate-buffered saline (PBS), fetal bovine serum (FBS), normal saline, or cell medium, the water contact angles were significantly reduced on the surface of HA-deposited PLLA. Chondrocyte and osteoblast showed a higher attachment and cell proliferation on HA-deposited surfaces and in particular, it was confirmed that chondrocyte was considerably influenced by HA. However, osteoblast showed better cell proliferation on the surfaces immersed in FBS, cell medium or HA-deposited surface. In addition, the cell proliferation in 3D scaffolds was much higher than that on film type, irrespective of chondrocyte and osteoblast. Therefore, such surface-modified PLLAs are expected to be useful as organic-inorganic hybrid scaffolds in the regeneration of cartilage and bone.

Optimization of growth inducing factors for colony forming and attachment of bone marrow-derived mesenchymal stem cells regarding bioengineering application

  • Quan, Hongxuan;Kim, Seong-Kyun;Heo, Seong-Joo;Koak, Jai-Young;Lee, Joo-Hee
    • The Journal of Advanced Prosthodontics
    • /
    • v.6 no.5
    • /
    • pp.379-386
    • /
    • 2014
  • PURPOSE. These days, mesenchymal stem cells (MSCs) have received worldwide attention because of their potentiality in tissue engineering for implant dentistry. The purpose of this study was to evaluate various growth inducing factors in media for improvement of acquisition of bone marrow mesenchymal stem cells (BMMSCs) and colony forming unit-fibroblast (CFU-F). MATERIALS AND METHODS. The mouse BMMSCs were freshly obtained from female C3H mouse femur and tibia. The cells seeded at the density of $10^6$/dish in media supplemented with different density of fetal bovine serum (FBS), $1{\alpha}$, 25-dihydroxyvitamin (VD3) and recombinant human epidermal growth factor (rhEGF). After 14 days, CFU-F assay was conducted to analyze the cell attachment and proliferation, and moreover for VD3, the 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) assay was additionally conducted. RESULTS. The cell proliferation was increased with the increase of FBS concentration (P<.05). The cell proliferation was highest at the density of 20 ng/mL rhEGF compared with 0 ng/mL and 200 ng/mL rhEGF (P<.05). For VD3, although the colony number was increased with the increase of its concentration, the difference was not statistically significant (P>.05). CONCLUTION. FBS played the main role in cell attachment and growth, and the growth factor like rhEGF played the additional effect. However, VD3 did not have much efficacy compare with the other two factors. Improvement of the conditions could be adopted to acquire more functional MSCs to apply into bony defect around implants easily.

Effect of Concentration and Exposure Duration of FBS on Parthenogenetic Development of Porcine Follicular Oocytes

  • Kim, Hyun-Jong;Cho, Sang-Rae;Choe, Chang-Yong;Choi, Sun-Ho;Son, Dong-Soo;Kim, Sung-Jae;Sang, Byung-Don;Han, Man-Hye;Ryu, Il-Sun;Kim, In-Cheul;Kim, Il-Hwa;Lee, Woon-Kyu;Im, Kyung-Soon
    • Journal of Embryo Transfer
    • /
    • v.22 no.4
    • /
    • pp.245-249
    • /
    • 2007
  • The aim of present experiment was to examine hatching rate as in vitro indicator of viability of porcine embryos before early stage embryo transfer such as zygotes or 2-cell stage embryos. Cumulus-oocyte complexes (COCs) collected from ovaries were matured in North Carolina State University 23 (NCSU-23) containing 10% porcine follicular fluid (pFF), 10 ng/ml epidermal growth factor (EGF), $10{\mu}g/ml$ follicle stimulating hormone (FSH), $35{\mu}g/ml$ luteinizing hormone (LH), and 1mg/ml cysteine. After 24 hours, the COCs were transferred to the same medium without hormones. After 65h of maturation, oocytes were exposed to phosphate buffered saline (PBS) with 7% ethanol (v/v) for 7 minutes, and then the oocytes were washed and cultured in tissue culture medium (TCM) 199 containing 5 ug/ml cytochalasin B for 5h at $38.5^{\circ}C$ in an atmosphere of 5% $CO_2$ and 95% air with high humidity. After cytochalasin B treatment, the presumptive parthenotes were cultured in porcine zygote medium (PZM)-5 and cleavage of the parthenotes was assessed at 72h of activation, Normally cleaved parthenotes were cultured for an additional 8 days to evaluate their ability to develop to blastocyst and hatching stages. The fetal bovine serum (FBS) were added at Day 4 or 5 with concentrations of 2.5, 5 or 10%. The blastocyst rates were ranged within $39.1{\sim}70%$ in each treatment. However hatching rate was dramatically decreased in non-addition group. In this experiment, embryo viability in female reproductive tract may be estimated before embryo transfer with in vitro culture adding FBS by hatching ability.

Toxicity Test of Sucrose and Trehalose Prior to Cryopreservation in Immature Bovine Oocytes

  • Park, Sang-Hyoun;Yu, Il-Jeoung
    • Journal of Embryo Transfer
    • /
    • v.23 no.4
    • /
    • pp.263-267
    • /
    • 2008
  • The purpose of this study was to determine toxic effect of sucrose and trehalose prior to cryopreservation on nuclear maturation and embryonic development in immature bovine oocytes. All cryoprotectant was prepared in tissue culture medium 199-HEPES (TCM 199-HEPES) with 10% fetal bovine serum (FBS). Immature oocytes were exposed to 1.2M ethylene glycol (EG) and 0.1M sucrose or 1.2M EG and 0.1M trehalose for 3 min and then were exposed to 3.2 M EG and 0.25 M sucrose or 3.2 M EG and 0.25 M trehalose for 1 min. Oocytes treated with cryoprotectants were exposed to 0.25 M sucrose or 0.25 M trehalose for 5 min and then 0.1 M sucrose or 0.1 M trehalose for 5 min. Depending on type of sugar added to cryopreservation solution, oocytes were allocated to sucrose group and trehalose group, respectively. Oocytes exposed to TCM 199-HEPES with 10% FBS were considered as control. Oocytes were cultured in TCM 199 supplemented with 10% FBS, 5 ng/ml epidermal growth factor, 0.01 IU/ml luteinizing hormone, and $1\;{\mu}g/ml$ estradiol for 24 h in $39^{\circ}C$, 5% $CO_2$. Nuclear maturation was assessed by staining oocytes with 1% aceto-orcein. Oocytes were fertilized in vitro and were cultured in TCM 199 supplemented with 10% FBS, 5 mM sodium pyruvate, and antibiotics in $39^{\circ}C$, 5% $CO_2$. The rates of cleavage and blastocyst, and cell number in blastocyst were assessed. Metaphase II rates were not different among experimental groups regardless of type of sugar. The cleavage rate of trehalose group (73.3%) was significantly higher (p<0.05) than those of sucrose group (62.8%) and control group (60.8%). The blastocyst rate was significantly higher in trehalose group (p<0.05). Mean cell number in blastocyst were not different among experimental groups, although cell number of blastocyst in trehalose group was significantly higher on day 7 (p<0.05). In conclusion, sucrose and trehalose were not toxic to immature bovine oocytes prior to cryopreservation. In particular, trehalose was more effective on embryonic development.

Participation of Protein Synthesis in in vitro Oocyte Maturation and Fertilization in Cattle

  • Nakaya, Y.;Hattori, M.;Fujihara, N.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.14 no.6
    • /
    • pp.754-758
    • /
    • 2001
  • Bovine oocytes with compact and complete cumulus cells were cultured for up to 24h in TCM199 buffered with 25mmol/l hepes and supplemented with 10% FBS (fetal bovine serum), 1mg/ml $17{\beta}$-estradiol, 20IU/ml hCG(human chorionic gonadotropin). All of the oocytes were divided into at 6 groups depending upon incubation times (control, 0 hour, 6 hours, 12 hours, 16 hours, 18 hours). To all experimental media, $200{\mu}g/ml$ puromycin was added at different incubation times mentioned above. Following these culture times, in vitro insemination was conducted with frozen-thawed bovine spermatozoa in medium BO (Brackett and Oliphant medium for in vitro insemination) with $10{\mu}g/ml$ BSA(bovine serum albumin) and 10 mg/ml heparin added. After 22h culture, the oocytes were fixed with acetic alcohol solution and stained with orcein acetic solution to evaluate sperm nuclear progression. Addition of puromycin after 0, 6 and 12 h of culture resulted in near of oocyte maturation at the M1 stage. Contrariwise, puromycin addition after 12 h of culture led to restoration of nuclear progression to M2 stage. On the one hand, puromycin affected the synthesis of Cyclin B protein that may be involved in the oocyte maturation and sperm capacitation for in vitro fertilization. The present study suggests the participation of protein synthesis, cyclin B, in the oocyte development from M1 to M2 stages in vitro.

Surface maker and gene expression of human adipose stromal cells growing under human serum. (인체혈청 하에서 배양한 인체지방기질줄기세포의 표면항원 및 유전자 발현)

  • Jun, Eun-Sook;Cho, Hyun-Hwa;Joo, Hye-Joon;Kim, Hoe-Kyu;Bae, Yong-Chan;Jung, Jin-Sup
    • Journal of Life Science
    • /
    • v.17 no.5 s.85
    • /
    • pp.678-686
    • /
    • 2007
  • Human mesenchymal stem cells(hMSC), that have been reported to be present in bone marrow, adipose tissues, dermis, muscles and peripheral blood, have the potential to differentiate along different lineages including those forming bone, cartilage, fat, muscle and neuron. Therefore, hMSC are attractive candidates for cell and gene therapy. The optimal conditions for hMSC expansion require medium supplemented with fetal bovine serum(FBS). Some forms of cell therapy will involve multiple doses, raising a concern over immunological reactions caused by medium-derived FBS proteins. Previously, we have shown that hADSC can be cultured in human serum(HS) during their isolation and expansion, and that they maintain their proliferative capacity and ability for multilineage differentiation and promote engraftment of peripheral blood-derived CD34 cells mobilized from bone marrow in NOD/SCID mice. In this study we determined whether hADSC grown in HS maintain surface markers expression similar with cells grown in FBS during culture expansion and compared gene expression profile by Affymetrix microarray. Flow cytometry analysis showed that HLA-DR, CD117, CD29 and CD44 expression in HS-cultured hADSC during culture expansion were similar with that in FBS-cultured cells. However, the gene expression profile in HS-cultured hADSC was significantly different from that in FBS-cultured cells. Therefore, these data indicated that HS-cultured hADSC should be used in vivo animal study of hADSC transplantation for direct extrapolation of preclinical data into clinical application.

Effects of Luteolin on Fetal Bovine Serum-induced Events in Cultured Rat Vascular Smooth Muscle Cells (소태아혈청으로 유도된 흰쥐 혈관평활근세포의 luteolin 효과)

  • Lim, Yong
    • Journal of Life Science
    • /
    • v.22 no.12
    • /
    • pp.1595-1599
    • /
    • 2012
  • Cell cycle activation and progression in vascular proliferative disease represent potent therapeutic targets. Luteolin, which occurs as glycosylated forms in celery, green pepper, perilla leaf, and camomile tea, has demonstrated antimutagenic, antitumorigenic, antioxidant, and antiinflammatory properties. In this study, we investigated the effect of luteolin on the proliferation of primary cultured rat aortic vascular smooth muscle cells induced by 5% fetal bovine serum. Luteolin at concentrations of 5, 20, and $50{\mu}M$ significantly inhibited this proliferation by 29.6, 50.8, and 83.1%, respectively. The incorporation of $[^3H]$-thymidine into DNA was also inhibited by 25.8, 57.6, and 81.0%, respectively. Flow cytometry analysis of DNA content revealed that FBS-inducible cell cycle progression was blocked by luteolin. Luteolin showed no cytotoxicity in VSMCs in this experimental condition according to WST-1 assays. Luteolin may represent a potential anti-proliferative agent for treatment of angioplasty restenosis and atherosclerosis.