• Title/Summary/Keyword: Fetal ECG Separation

Search Result 2, Processing Time 0.018 seconds

A Study on the Separation of Fetal ECG from a Single Channel Abdominal ECG (단일채널 복부 심전도를 통한 태아 심전도 분리)

  • Park Kwang-Li;Lee Kyoung-Joung;Lee Jeon
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.54 no.3
    • /
    • pp.198-205
    • /
    • 2005
  • In this paper, we proposed a new algorithm for the separation of fetal ECG from single channel abdominal ECG. The algorithm consists of a stage of demixing vector calculation for initial signal and a stage of fetal beat detection for the rest of signal. The demixing vector was obtained by applying independent component analysis technique to projected signals into time-frequency domain. For the test of this algorithm, simulation signals, De Lathauwer's data and some measured data, which was acquired from 8 healthy volunteers whose pregnant periods ranged from 22 weeks to 35 weeks and whose ages from 27 to 37, were used. For each data, the accuracy of fetal beat detection was $100\%$ and with the location of fetal beats, fetal heart rate variability and morphology could be offered. In conclusion, this proposed algorithm showed the possibility of fetal beat separation with a single channel abdominal ECG and it might be adopted to a fetal health monitoring system, by which a single channel abdominal ECG is acquired.

Development of a New Non-invasive Fetal Hypoxia Diagnosis System (새로운 비관혈적 태아 저산소증 진단 방법개발에 관한 연구)

  • Lee, Jeon;Lee, Kyoung-Joung
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.55 no.11
    • /
    • pp.495-501
    • /
    • 2006
  • Diagnostics of unborn baby is mainly aimed at prediction and detection of occurrence of intrauterine hypoxia. Consequences resulting from fetal hypoxia appear in its heart activity. In this study, we have developed a new non-invasive system for fetal hypoxia diagnosis which provides systolic time interval(STI) parameters on the basis of analysis of electrical and mechanical heart activity together. For this we have worked on 1) the proper lead system for the acquisition of abdominal ECG, 2) the independent component analysis based signal processing and fetal ECG separation, 3) the development of a hardware which consists of an abdominal ECG amplifying module and an ultrasound module and 4) the detection of characteristic points of FECG and Doppler signal and the extraction of diagnostic parameters. The developed system was evaluated by the clinical experiments in which 33 subjects were participated. The acquired STI by the system were distributed within the ranges from the well-established invasive results of other researchers. From this, we can conclude that the developed non-invasive fetal hypoxia diagnosis system is useful.