• Title/Summary/Keyword: Fertilizer rate

검색결과 1,224건 처리시간 0.026초

Effects of Some Soil Conditioners on Soil Physical Properties and Lettuce Growth (토양구조개선제(土壤構造改善劑) 처리(處理)가 토양물리성(土壤物理性)과 상추생육(生育)에 미치는 영향(影響))

  • Ryu, In-Soo;Han, Jeung-Lim;Jo, In-Sang
    • Korean Journal of Soil Science and Fertilizer
    • /
    • 제28권3호
    • /
    • pp.249-255
    • /
    • 1995
  • This study was conducted to investigate the effects of some soil conditioners, such as polyacrylamide(PAM), polyvinylalcohol(PVA) and Bitumen emulsion, on aggregate formation and stability, wetting angle, sorptivity and penetrability of the soil with different textures : sand, sandy loam, loam and clay loam. A pot experiment was carried out to find out the effect of treatment on the germination and growth of lettuce with three textures : sand, sandy loam and silt loam. Soil aggregates larger than 2mm in untreated soils at dry condition were naught in sand, 45% in sandy loam, 80% in loam and 90% in clay loam. Treatments of soil conditioners tended to increase the occurrence of soil aggregate larger than 2mm, which were 20~25% in sand, 55~75% sandy loam, but not affected greatly aggragate occurence in loam and clay loam. The aggregate instability was decreased by the soil conditioner treatment. The wetting angles of the soils were greatly changed by hydrophobic of Bitumen, but those were changed slightly by PVA and PAM application. The sorptivity and penetrability data indicated that the effects of different materials on these parameters differed depending upon soil texture. Application of PVA and PAM were no effect exceptive in sand. Application of Bitumen revealed that water movement was not showed in all soils. The germination rate, root weight and top plant weight of lettuce were increased in all soils by PAM treatment as compared to untreated soils. Particularly the greater effect was occurred in sand soil than in sandy loam and silt loam. PAM increased greatly the moisture content and air phase of soils.

  • PDF

Effect of Ammonium Thiosulfate on Biological Activity in a Paddy Soil (Ammonium Thisoulfate 처리가 담수(湛水) 답토양(畓土壤)의 생물활성(生物活性)에 미치는 영향)

  • Lim, Sun-Uk;Seo, Young-Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • 제27권1호
    • /
    • pp.40-47
    • /
    • 1994
  • The objective of this research was to examine the effect of ammonium thiosulfate(ATS) on urease activity and on biological and chemical properties of flooded paddy soil especially having high organic matter content by comparing with the effect of sodium thiosulfate(STS). The results obtained are summarized as follows. 1. The hydrolysis of urea was inhibited at 3 and 5 days after treatment of thiosulfate(ATS and STS) +glucose and thiosulfate only, respectively. The inhibitory effect of ATS on urea hydrolysis was slightly lower than that of STS in glusoce-added soils, but when the glucose was not added, the effects of ATS and STS were not different significantly. 2. The soil pH and Eh was lowered by 0.3~0.5 units and 30~120 mV, respectively, when incubated flooded soil with ATS and glucose at $25^{\circ}C$. 3. Soil respiration rate in/flooded soil was increased by 10~70% with the treatment of ATS during the 20 day experimental period. 4. The contents of acetic and butyric acid in thiosulfate treatment soil was below $10{\mu}g/g$, which was lower than that($220.3{\mu}g/g$) of critical growth inhibition of rice.

  • PDF

Substrate Quality Effects on Decomposition of Three Livestock Manure Composts with Similar Stability Degree in an Acid Loamy Soil

  • Lim, Sang-Sun;Jung, Jae-Woon;Choi, Woo-Jung;Ro, Hee-Myong
    • Korean Journal of Soil Science and Fertilizer
    • /
    • 제44권4호
    • /
    • pp.527-533
    • /
    • 2011
  • Decomposition of compost applied to soils is affected basically by its biological stability; but, many other chemical properties of the compost may also influence compost organic-C mineralization. This study was conducted to investigate the principal substrate quality factors of composts that determine C mineralization of compost with similar stability degree (SD). Three composts samples with similar SD but different chemical properties such as pH, C/N, $K_2SO_4$-extractable C, and molar ratio of $NH_4^+$ to $NO_3^-$ were mixed with an acid loamy soil and $CO_2$ emission was monitored during the laboratory incubation for 100 days. Temporal pattern of cumulative compost organic-C mineralization expressed as % of total organic C ($C_{%\;TOC}$) followed double exponential first order kinetics model and the $C_{%\;TOC}$ ranged from 4.8 to 11.8% at the end of incubation. The pattern of C%TOC among the composts was not coincident with the SD pattern (40.1 to 58.6%) of the composts; e.g. compost with the lowest SD resulted in the least $C_{%\;TOC}$ and vice versa. This result indicates that SD of compost can not serve as a concrete predictor of compost mineralization as SD is subject not only to maturity of compost but also to characteristics of co-composting materials such as rice hull (low SD) and sawdust (high SD). Meanwhile, such pattern of $C_{%\;TOC}$ collaborated with pH, C/N, $K_2SO_4$-extractable C, and molar ratio of $NH_4^+$ to $NO_3^-$ of the composts that are regarded as chemical indices of the progress of composting. Therefore, for better prediction of compost mineralization in soils, it is necessary to consider both SD and other chemical indices (pH, C/N, and molar ratio of $NH_4^+$ to $NO_3^-$).

Study on the Optimum Rate of N. P. K Fertilizers for Pearl Barley(Coix Lacryma-Jobi L.) (율무 재배(栽培)에 대(對)한 삼요소(三要素) 시비적량시험(施肥適量試驗))

  • Cho, Jin-Kee;Chang, Nam-Il;Choi, Jyung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • 제9권4호
    • /
    • pp.245-250
    • /
    • 1976
  • A field study was conducted to find out the optimum level of NPK fertilizers for pearl barley (Coix Lacryma-Jobi L.). The results are sumarized as follows. 1. When all of NPK fertilizers were increased together as 0-0-0, 6-3-3, 12-6-6-6 and 18-9-9 kg/10a of NPK, the grain yield also increased lineally. 2. When the level of two other elements were fixed at 12kg/10a for N and 6kg/10a for P and K, maximum yields were obtained at 12kg/10a of N and 6kg/10a of P and K. 3. Accordingly, with present results, it is difficult to point out the optimum levels of NPK. It seemed necessary to conduct another trial with expanded NPK levels. However it can be pc pointed out that the yield of pearl barley can be increased with higher levels of NPK fertilizers than 18-9-9 kg/10a at the similar soil used for present study. 4. The antagonism phenomena were observed between N and K in plant's uptake.

  • PDF

Influence of Soil Chemical Properties in Ginseng Field on the Growth and the Yield of Ginseng (인삼포지(人蔘圃地)의 토양화학성(土壌化学性)이 생육(生育) 및 수량(收量)에 미치는 영향(影響))

  • Lee, Il-Ho;Yuk, Chang-Soo;Han, Kang-Wan;Nam, Ki-Yeui;Bae, Hyo-Won
    • Korean Journal of Soil Science and Fertilizer
    • /
    • 제13권4호
    • /
    • pp.99-105
    • /
    • 1981
  • To find the relationship between the adequate amount of soil chemical components and ginseng growth including root weight, 49 farmer's red ginseng field from the main ginseng growing area were studied intensively. 1. The ranges of soil chemical component of high yield ginseng field were 8.9 to 14.5 me/100g of CEC 1.5 to 3.5% of organic matter, 45 to 257 ppm of available phosphorus, 0.34 to 0.55 me/100g of potassium and 0.002 to 0.012 of K/P ratio respectively. 2. Higher content of organic matter, CEC, exchangeable potassium and higher rate of K/P were observed in soils of ginseng field with high yield than in soils of low one. The CEC content in soil was positively correlated with the plant growth, and available phosphate content in soil was negatively correlated with yield of ginseng root. 3. There was highly positive significant correlation between root yield of ginseng and K/P ratio of ginseng soil. Similar result also observed between root yield of ginseng and K/P ratio of upper part of ginseng plant.

  • PDF

Optimum Rates of N. Absorbed Zeolite to be Applied under the Water Percolation Adjusted Sand Paddy Soil (사질답토양(砂質沓土壤)에서 투수속도조절(透水速度調節)과 질소흡착(窒素吸着) Zeolite의 시비량(施肥量)에 관(關)한 연구(硏究))

  • Ahn, Sand-Bae;Park, Jun-Kyu;Cho, Seong-Jin
    • Korean Journal of Soil Science and Fertilizer
    • /
    • 제20권2호
    • /
    • pp.101-106
    • /
    • 1987
  • A pot experiment was conducted to find out the effectiveness of ammonium sulfate absorbed Zeolite on the yield of rice and the changes of some plant nutrients under the condition of two levels of water percolation. The results were as follows: 1. Unhulled rice yield was increased in the plot of the percolation of 10 mm/day than the percolation of 30 mm/day due to the increase of panicle number and ripening ratio. 2. $NH^+_4-N$, $K^+$ and $SiO_2$ concentration in soil leachates were lower in the percolation rate of 10 mm/day than in the early stage of rice growth were decreased by the application of Zeolite 1.0 T/10a. 3. Plant uptakes of K and N in the harvesting stage were more accelerated in the percolation of 10 mm/day comparing with the percolation of 30 mm/day, and the silica uptake of plant was the reverse against the case of former elements. 4. The optimum rates of Zeolite for maximum yield were about 1T/10a.

  • PDF

Response of N. Sources to Nutrient Uptake of Tobacco Plant (질소원(窒素源)에 따른 담배식물의 양분흡수반응(養分吸收反應))

  • Lee, Yun-Hwan
    • Korean Journal of Soil Science and Fertilizer
    • /
    • 제18권4호
    • /
    • pp.413-418
    • /
    • 1985
  • Tobacco plant(8-leaf seedlings) were grown on water culture fertilized with different N sources ($NO_3-N$, $NH_4-N$, $NO_3+NH_4-N$) during 15 days. Daily uptake of nutrients and inorganic constituents in plants were investigated in relation to growth responses of them. 1. Nitrate-fed plant showed higher daily uptake of inorganic cations than those in other treatments, and reached about two times higher uptake of nitrogen and three times more uptake of cations (K, Ca, Mg). Potassium was preferentially uptaken at a very fast rate from the beginning after treatment. Also $NO_3-N$ tended to be taken up selectively by the plant from the mixture of nitrate and $NH_4-N$. 2. The initial pH (pH 6.0) of culture medium drastically changed into acid (pH 4.0) in the $NH_4-N$ medium, but into slightly higher (pH 6.4) in the nitrate when measured after exposure of 24 hours. The mixture also tended to show an acidity but much weaker than $NH_4-N$ solution. 3. Nitrate-fed plant had a normal growth pattern but $NH_4-N$ fed plant almost stopped growing. Those plants containing both nitrate and ammonium N were also showed very poor growth.

  • PDF

Radioactivity in soils (I) -A method for the identification of 40K and measurement of beta activity in paddy soils (한국토양(韓國土壤)의 방사능(放射能)에 관(關)한 연구(硏究) (I) - 답토양(畓土壤)의 β 방사능(放射能) 및 40K 핵종동정법(核種同定法) -)

  • Kim, Tai Soon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • 제4권1호
    • /
    • pp.55-66
    • /
    • 1971
  • A method for the identification of and measurement of beta activity due to $^{40}K$ have been developed in this institute. The method is based on the principle of : $$G(t)=\frac{A}{A_{\infty}}=1-e^{-{\eta}t}$$ where: G(t)=fraction of maximum activity A = counting rate of thickness $A_{\infty}$= saturation activity ${\eta}$= mass absorption coefficient of $^{40}K$ By this technique, total beta activity in 92 Korean paddy soil samples collected from various part of the country, have been determined and the results of this analysis reported in this paper. Most of the beta activity in soils have been accounted for to be due to $^{40}K$.

  • PDF

Effects of Amount of Nitrogen Application on Decomposition of Barley Straw and Growth & Yield of Rice in Paddy Field of Double Cropping (이모작(二毛作) 답(畓)에서 질소시용량(窒素施用量)이 보릿짚 분해(分解)와 수도생육(水稻生育) 및 수량(收量)에 미치는 영향(影響))

  • Yoo, Chul-Hyun;Yang, Chang-Hyu;Lee, Sang-Bok;Kang, Seung-Weon;Han, Sang-Soo;Kim, Seong-Jo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • 제33권3호
    • /
    • pp.167-174
    • /
    • 2000
  • To investigate the effect of amount of nitrogen application on decomposition of barley straw, growth and yield of rice in paddy field of double cropping, this study was conducted to Jeonbuk series at the Honam area from 1997 to 1998. Carbon persistence of barley straw was lowered while nitrogen persistence rate was increased as increasing amount of nitrogen application and carbon -nitrogen ratio was not decreased as increasing amount of nitrogen application. Soil microflora under barley straw application was high in order of actinomycetes>cellulosedecomposer>bacteria>fungi. Nitrogen starvation under barley straw application showed at tillering stage of rice, but this was not appeared in plot of N $144kg\;ha^{-1}$ application. Plant height, culm length and ear length of rice plant by barley straw application were short, but those of N $108kg\;ha^{-1}$ application was not different from compared with none-application barley straw. Rice yield of N $108kg\;ha^{-1}$ applied barley straw was smiliar to none-application barley straw, but that of N 90. $144kg\;ha^{-1}$ was highly decreased.

  • PDF

Effect of Subsurface Drainage Systems on Soil Salinity at Saemangeum Reclaimed Tidal Land

  • Lee, Sanghun;Bae, Hui-Su;Lee, Soo-Hwan;Oh, Yang-Yeol;Ryu, Jin-Hee;Ko, Jong-Cheol;Hong, Ha-Chul;Kim, Yong-Doo;Kim, Sun-Lim
    • Korean Journal of Soil Science and Fertilizer
    • /
    • 제48권6호
    • /
    • pp.618-627
    • /
    • 2015
  • Soil salinity is the most critical factor for crop production at reclaimed tidal saline soil. Subsurface drainage system is recognized as a powerful tool for the process of desalinization in saline soil. The objective of this study was to investigate the effects of subsurface drainage systems on soil salinity and corn development at Saemangeum reclaimed tidal saline soil. The field experiments were carried out between 2012 and 2014 at Saemangeum reclaimed tidal land, Buan, Korea. Subsurface drainage was installed with four treatments: 1) drain spacing of 5 m, 2) drain spacing 10 m, 3) double layer with drain spacing 5 m and 10 m, and 4) the control without any treatment. The levels of water table showed shorter periods above 60 cm levels with the deeper installation of subsurface drainage system. Water soluble cations were significantly greater than exchangeable forms and soluble Na contents, especially in surface layer, were greatly reduced with the installation of subsurface drainage system. Subsurface drainage system improved biomass yield of corn and withering rate. Thus, the biomass yield of corn was improved and the shoot growth was more affected by salinity than was the root growth. The efficiency of double layer was not significant compared with the drain spacing of 5 m. The economic return to growers at reclaimed tidal saline soil was the greatest by the subsurface drainage system with 5 m drain spacing. Our results demonstrated that the installation of subsurface drainage system with drain space of 5 m spacing would be a best management practice to control soil salinity and corn development at Saemangeum reclaimed tidal saline soil.