• Title/Summary/Keyword: Ferrosilicon

Search Result 6, Processing Time 0.034 seconds

Durability Evaluation of Cement Concrete Using Ferrosilicon Industrial Byproduct (페로실리콘 산업부산물 활용 시멘트 콘크리트의 내구성능 평가)

  • Chang-Young Kim;Ki Yong Ann
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.1
    • /
    • pp.89-96
    • /
    • 2023
  • In this paper, a ferrosilicon by-product was evaluated to confirm the feasibility of recycling it as supplementary cementitious material of ordinary Portland cement in concrete. Three different levels of replacement ratio (10 %, 20 % and 30 % of total binder) were applied to find which is the most beneficial to be used as a binder. Ferrosilicon concrete was initially assessed at setting time and compressive strength. Durability was evaluated by the resistance to chloride penetration test(RCPT) and alkali-silica reaction(ASR) with a comparison to silica fume concrete due to their similarity in chemical composition. The porosimetry and X-ray diffraction analysis along with energy dispersive X-ray spectroscopy give information on the microstructural characteristics of the ferrosilicon concrete. It was found that 10 % ferrosilicon concrete has higher strength while 20 %, 30 % have lower strength than OPC concrete. However, chemical resistance to chloride attack is higher when replacement is increased. Compared to silica fume, the durability of ferrosilicon might be less efficient however, it is obviously beneficial than OPC. High SiO2 content in ferrosilicon results in producing more C-S-H gel which could make denser pore structure. Most of the risk of alkali silica reaction to silicate binders through length change tests was less than 0.2 %, and both mortar using ferrosilicon and silica fume showed better resistance to alkali silica reaction as the substitution rate increased.Reuse of industrial waste rather than producing highly refined additives might reduce environmental load during manufacture and save costs.

An Effective Wireless Power Transfer Technique using Permalloy (Permalloy를 이용한 효율적 인 무선 전력송신 기술)

  • Hwang, Jae-Young;Chung, Yeon-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.3
    • /
    • pp.678-683
    • /
    • 2010
  • This paper presents a wireless (contactless) charging technique with a new core material called permalloy. For charging portable devices wirelessly, ferrosilicon or ferrite has been conventionally used. Due to high permeability of permalloy, charging efficiency can be significantly improved and subsequently this high efficiency increases charging distance between charger and portable devices. Comparative experimental studies demonstrate that the charging performance and efficiency with permalloy employed are significantly improved. The proposed wireless charging techniques can be used to charge portable devices efficiently.

A Study on the Combustion of the Ferrosilicon-Minium Delay Powders (지연화학의 연소에 관한 연구)

  • 김용욱;강원만
    • Journal of the Korean Society of Safety
    • /
    • v.1 no.1
    • /
    • pp.33-40
    • /
    • 1986
  • The results from a study on the combustion of the ferrosilicon-miniun delay powder which was examined under the various conditions are as follows. 1. It has been found that in case of these delay powders, decomposition of oxidiging agents occurs first and then reducing agents are oxidized by the gases evolved from the oxidizing agents and by the oxygen in air. Therefore, the main reactions are heterogenous reaction and especially He gas phase plays an important role in combustion reactions of delay Powders. 2. In case the loading pressure is below 100kg per a detonator, the dispresion of burning time is large. 3. Little or no increase in humidity was observed on daily measurement during six month preservation tests. 4. The amperage of electric current for igniting the fuse head has no effect on the burning time of delay conposition itself changed in the detonator.

  • PDF

A Feasibility Study on the Application of Ferrosilicon By-Product in Concrete to Replace Silica Fume (콘크리트 내 실리카퓸을 대체하기 위한 페로실리콘 산업부산물의 활용 적절성에 대한 연구)

  • Kim, Hansol;Cho, Won Jung;Ann, Ki Yong
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.4
    • /
    • pp.413-422
    • /
    • 2019
  • A ferrosilicon (FS) by-product was applied into a cementitious binder in concrete substituting the ordinary Portland cement (OPC). The original material characteristic of FS is very identical to silica fume (SF) regarding chemical composition and physical properties such as specific surface area and specific gravity. Therefore, the FS and SF concrete or mortal of which 10% of the material was replaced to total binder weight were fabricated to evaluate the feasibility of using F S as a binder, and the comparative information of OPC, FS and SF concrete was given. The hydration characteristic of FS concrete was analyzed using X-ray diffraction analysis. The FS concrete was beneficial in compressive strength, resistivity against chloride ingress and reducing porosity considering performance of OPC concrete but the advantage was less than using SF. A possibility of alkali-silica expansion was found out from the FS concrete due to the agglomerated size of the silica particles.

Utilising artificial neural networks for prediction of properties of geopolymer concrete

  • Omar A. Shamayleh;Harry Far
    • Computers and Concrete
    • /
    • v.31 no.4
    • /
    • pp.327-335
    • /
    • 2023
  • The most popular building material, concrete, is intrinsically linked to the advancement of humanity. Due to the ever-increasing complexity of cementitious systems, concrete formulation for desired qualities remains a difficult undertaking despite conceptual and methodological advancement in the field of concrete science. Recognising the significant pollution caused by the traditional cement industry, construction of civil engineering structures has been carried out successfully using Geopolymer Concrete (GPC), also known as High Performance Concrete (HPC). These are concretes formed by the reaction of inorganic materials with a high content of Silicon and Aluminium (Pozzolans) with alkalis to achieve cementitious properties. These supplementary cementitious materials include Ground Granulated Blast Furnace Slag (GGBFS), a waste material generated in the steel manufacturing industry; Fly Ash, which is a fine waste product produced by coal-fired power stations and Silica Fume, a by-product of producing silicon metal or ferrosilicon alloys. This result demonstrated that GPC/HPC can be utilised as a substitute for traditional Portland cement-based concrete, resulting in improvements in concrete properties in addition to environmental and economic benefits. This study explores utilising experimental data to train artificial neural networks, which are then used to determine the effect of supplementary cementitious material replacement, namely fly ash, Ground Granulated Blast Furnace Slag (GGBFS) and silica fume, on the compressive strength, tensile strength, and modulus of elasticity of concrete and to predict these values accordingly.

Studies on the Manufacturing of Carbon Bond Graphite Crucible (카아본 본드형 흑연 도가니 제조에 관한 연구)

  • 김충일;김문수
    • Journal of the Korean Ceramic Society
    • /
    • v.13 no.1
    • /
    • pp.11-19
    • /
    • 1976
  • This study was focused on the improvement of production techniques of small crucibles in relation with the appropriate selection of raw materials, various batch compositions and physical and chemical characteristics of the crucibles. Various tests gave the optimum batch composition for the carbon bond graphite cructble as follows: Pyontaek graphite flake (refractory aggregate) : 40Part Silicon carbide: 15Part Tar pitch (binder) : 11Part Inorganic additives (to improve the oxidation resistance) : 15 Part Cryolite : 3 Part Ferro manganese : 2 Part Ferrosilicon : 25 Part Crucibles pressed with 400kg/$\textrm{cm}^2$ at 12$0^{\circ}C$. and fired in reducing atmosphere at 120$0^{\circ}C$ brought the most favorable results as follows: Bulk density : 2.31 Apparent density : 2.58 Porosity : 15.2% Oxidation loss at 1, 50$0^{\circ}C$. for 3 hrs : below 3.77% Water absorption : 6.01% Compressive strength : 438kg/$\textrm{cm}^2$ Tensile strength : 256kg/$\textrm{cm}^2$.

  • PDF