• Title/Summary/Keyword: Ferromagnetic particle

Search Result 25, Processing Time 0.018 seconds

Magnetic Behaviors of Isolated Fe-Co-Ni Nanoparticles in a Random Arrangement

  • Yang, Choong Jin;Kim, Kyung Soo;Wu, Jianmin
    • Journal of Magnetics
    • /
    • v.6 no.3
    • /
    • pp.94-100
    • /
    • 2001
  • Fe-Co-Ni particles with an average size of 45 and 135 nm are characterized in terms of magnetic phase transformation and magnetic properties at room temperature. BCC structure of Fe-Co-Ni spherical particles can be synthesized from Fe-Co-Ni-Al-Cu precursor films by heating at 600-80$0^{\circ}C$ for the phase separation of Fe-Co rich Fe-Co-Ni particles, followed by a post heating at $600^{\circ}C$ for 5 hours. The average size of nanoparticles was directly determined by the thickness of precursor films. Exchange interactive hysteresis was observed for the nano-composite (Fe-Co-Ni)+(Fe-Ni-Al) films resulting from the short exchange interface between ferromagnetic Fe-Co-Ni particles surrounded by almost papramagnetic Ni-Al-Fe matrix. Arraying the isolated Fe-Co-Ni nano-particles in a random arrangement on $Al_2O_3$substrate the particle assembly showed a behavior of dipole interactive ferromagnetic clusters depending on their volume and inter-particle distance.

  • PDF

Fundamental study on cancer therapy by blocking newborn blood vessels by magnetic force control

  • KIRIMURA, Makoto;AKIYAMA, Yoko;NISHIJIMA, Shigehiro
    • Progress in Superconductivity and Cryogenics
    • /
    • v.20 no.2
    • /
    • pp.11-15
    • /
    • 2018
  • In this study, a cancer treatment by accumulating and aggregating ferromagnetic particles in newborn blood vessels was examined. It is necessary for this treatment to control dispersion-aggregation property of ferromagnetic particles. Ferromagnetic particles required in this method disperse at low magnetic field, aggregate at high magnetic field and maintain the aggregation even after removal of the magnetic field. In order to control the dispersion-aggregation property, the surface of magnetite particles was modified with higher fatty acids having different lengths. As a result, we succeeded to prepare propionic acid-modified magnetite particles that form irreversible aggregation by magnetic field. The model experiments simulating newborn blood vessels showed that these particles can block the flow by the magnetic field, and the blockage was maintained after removal of the magnetic field.

The Relation of Crystallite Size and Ni2+ Content to Ferromagnetic Resonance Properties of Nano Nickel Ferrites

  • Lafta, Sadeq H.
    • Journal of Magnetics
    • /
    • v.22 no.2
    • /
    • pp.188-195
    • /
    • 2017
  • The ferromagnetic resonance and other magnetic properties dependence on $Ni^{2+}/Fe^{3+}$ ratio and crystallite size were investigated for nano nickel ferrite ($NiFe_2O_4$). The crystallite size was controlled by controlling the nickel content in the starting material solution. The XRD and TEM were utilized to measure the crystallite size through Scherrer formula and particle size respectively. The most frequent particle sizes were lower than crystallite size, which ranged from 16.5 to 44.65 nm. The general behavior of M-H loop shapes and parameters showed superparamagnetic one. The saturation magnetization had a maximum value at $Ni^{2+}/Fe^{3+}$ molar ratio equal to 0.186. The FMR signals showed, generally, broad linewidths, where the maximum width and minimum resonance field were for the sample of the lowest crystalline size. Furthermore, FMR resonance field shows linear dependence on crystalline size. The fitting relation was estimated to express this linear dependency on the base of behavior coincidence between particle size and the inverse of saturation magnetization. The given interpretations to understand the intercept and the slope meanings of the fitted relation were based on Larmor equation, and inhomogeneous in the anisotropy constant.

Fabrication of Ferromagnetic Mn-AI Alloy N anoparticles using a Plasma Arc-discharge Process (플라즈마 아크 방전법에 의한 강자성 Mn-Al 합금나노입자의 합성)

  • Lee, Jung-Goo;Li, Pu;Dong, Xing Long;Choi, Chul-Jin
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.4
    • /
    • pp.357-362
    • /
    • 2010
  • Ferromagnetic Mn-Al nanoparticles were prepared using a plasma arc discharge method. The influence of the process parameters on the vaporization rate, composition, particle size, and magnetic properties of the as-produced nanoparticles was investigated. The Mn content was found to be higher in the nanoparticles than in the corresponding mother materials, although the difference diminished with the reaction time. As the $H_2$ content in the reaction gas increased, both the vaporization rate and the particle size increased. With 30 at.% Mn, the average particle diameter was 35.2 nm under a pure Ar gas condition, whereas it was 95.4 nm at a Ar:$H_2$ ratio of 60:40. With the addition of a small amount of carbon, ${\varepsilon}$-phase nanoparticles were successfully synthesized. After a heat treatment in a vacuum for 30 min at $500^{\circ}C$, the nonmagnetic ${\varepsilon}$-phase was transformed into the ferromagnetic ${\tau}$-phase, and a very high coercivity of nearly 5.6 kOe was achieved.

Preparation of Kerosine-Based Magnetic Ferrofluid by Steric Stabilizaton (Steric Stabilization에 의한 석유분산매 자성유체의 제조)

  • 신학기;장현명;김태옥
    • Journal of the Korean Ceramic Society
    • /
    • v.27 no.5
    • /
    • pp.684-692
    • /
    • 1990
  • Ultrafine magnetite powder for the ferromagnetic fluid was prepared by an addition of alkaline solution to the solution containing Fe2+ and Fe3+ ions at 6$0^{\circ}C$. The optimum condition of the magnetite synthesis was delineated by examining such various physico-chemical properties as Fe2+/Fe+3 ratio in the powder, phase characteristics, MHC and $\sigma$max. A new scheme for the steric stabilization of colloidal dispersion was proposed using the concept of the buffer group action for the increased interfacial density of the stabilizing moieties at colloid particle/dispersion medium interface. The proposed concept was successfully applied to the preparation of the kinetically stable kerosinebased ferrofluid using Tween and Span as dispersants. In the dispersion of magnetite particles in a kerosine, Tween(polyoxyethylene sorbitan oleate) acts as a primary stabilizer which provides an anchor group, whereas Span(sorbitan oleate) can be classified as a secondary stabilizer which adsorbs on the surface of magnetite particle through the action of the buffer group. Dispersion studies using various quantities of Tween and Span supported the concept of the buffer group action for increased dispersion characteristics of the kerosine based ferromagnetic fluid.

  • PDF

Theoretical Study on Magnetic Field Application for Fine Particle Capture

  • Huang, Shan;Park, Haewoo;Jo, Youngmin
    • Particle and aerosol research
    • /
    • v.10 no.2
    • /
    • pp.45-51
    • /
    • 2014
  • Fine particle capture is facing a challenge since traditional filtration which relies on the combination of impaction, interception, diffusion has a limited efficiency for fine particle capture particularly in size from 0.1 to $0.5{\mu}m$. This paper reviewed the collection efficiency of above mechanisms, as well as magnetic mechanisms for ferromagnetic particles, and mainly studied the influencing factors of magnetic filtration. Filtration velocity, magnetic field intensity and fiber size were found to be the most important parameters for magnetic filtration.

Manufacture of Novel Composites Synthesized with Ferromagnetic and Nano-Sized Prussian Blue and D eriving Optimum Conditions (강자성체와 나노사이즈의 프러시안 블루가 합성된 새로운 형태의 복합체 제조 및 최적의 적용 조건 도출)

  • Jong Kyu Kim
    • Korean Journal of Materials Research
    • /
    • v.33 no.4
    • /
    • pp.151-158
    • /
    • 2023
  • In this study, a new type of composite material combined with carbonyl iron, a relatively strong ferromagnetic material, was prepared to overcome the current application limitations of Prussian blue, which is effective in removing radioactive cesium. The surface of the prepared composite was analyzed using SEM and XRD, and it was confirmed that nano-sized Prussian Blue was synthesized on the particle surface. In order to evaluate the cesium removal ability, 0.2 g of the composite prepared for raw cesium aquatic solution at a concentration of 5 ㎍ was added and reacted, resulting in a cesium removal rate of 99.5 %. The complex follows Langmuir's adsorption model and has a maximum adsorption amount (qe) of 79.3 mg/g. The Central Composite Design (CCD) of the Response Surface Method (RSM) was used to derive the optimal application conditions of the prepared composite. The optimal application conditions achieved using Response optimization appeared at a stirring speed of pH 7, 17.6 RPM. The composite manufactured through this research is a material that overcomes the Prussian Blue limit in powder form and is considered to be excellent economically and environmentally when applied to a cesium removal site.

Magnetic Abrasive Polishing Technology with Ceramic Particles (세라믹 입자를 이용한 자기연마가공 기술 사례)

  • Kwak, Tae-Soo;Kwak, Jae-Seob
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.12
    • /
    • pp.1253-1258
    • /
    • 2013
  • Ceramic particles as polishing abrasives are often used in a magnetic abrasive polishing process because they have strong wear resistance. Non-ferromagnetic ceramic abrasives should be mixed with ferromagnetic iron particles for controlling the mixture within a magnetic brush during the polishing process. This study describes the application of the ceramic particles for the magnetic abrasive polishing. The distribution of the magnetic abrasives attached on a tool varies with magnetic flux density and tool rotational speed. From the correlation between abrasive adhesion ratio in the tool and surface roughness produced on a workpiece, practical polishing conditions can be determined. A step-over for polishing a large sized workpiece is able to be selected by a S curve, and an ultrasonic vibration assisted MAP produces a better surface roughness and increases a polishing efficiency.

Non Darcy Mixed Convection Flow of Magnetic Fluid over a Permeable Stretching Sheet with Ohmic Dissipation

  • Zeeshan, A.;Majeed, A.
    • Journal of Magnetics
    • /
    • v.21 no.1
    • /
    • pp.153-158
    • /
    • 2016
  • This paper aims to discuss the Non Darcy boundary layer flow of non-conducting viscous fluid with magnetic ferroparticles over a permeable linearly stretching surface with ohmic dissipation and mixed convective heat transfer. A magnetic dipole is applied "a" distance below the surface of stretching sheet. The governing equations are modeled. Similarity transformation is used to convert the system of partial differential equations to a system of non-linear but ordinary differential equations. The ODEs are solved numerically. The effects of sundry parameters on the flow properties like velocity, pressure, skin-friction coefficient and Nusselt number are presented. It is deduced the frictional resistance of Lorentz force decreases with stronger electric field and the trend reverses for temperature. Skin friction coefficient increase with increase in ferromagnetic interaction parameter. Whereas, Nusselt number decrease.

Measurement of activation magnetic moment in ferromagnetic thin films

  • Choe, Sug-Bong;Shin, Sung-Chul
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2000.09a
    • /
    • pp.200-206
    • /
    • 2000
  • We have investigated the activation magnetic moment, which characterizes the basis magnetic moment acting as a single magnetic particle during magnetization reversal. The activation magnetic moment was measured from each local area on continuous ferromagnetic thin films, by analyzing the magnetic field dependence of magnetization reversal of the corresponding local area based on a thermally activated relaxation process. It was found that the activation magnetic moment was nonuniform on submicrometer scale; the fluctuation increased with increasing the number of layers in Co/Pd multilayers. The distribution could be well analyzed by exp($\delta$m$\^$3/2/), where $\delta$m is the deviation of the activation magnetic moment from the mean value.

  • PDF