• 제목/요약/키워드: Ferroelectric perovskite phases

검색결과 21건 처리시간 0.029초

Sol-Gel법에 의한 Pb($Zr_{0.52}$$Ti_{0.48}$)$O_3$박막의 제조 및 강유전 특성 (Preparing and Ferroelectric Properties of the Pb($Zr_{0.52}$$Ti_{0.48}$)$O_3$ Thin Film by Sol-Gel Method.)

  • 이영준;정장호;이성갑;이영희
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1994년도 추계학술대회 논문집
    • /
    • pp.168-170
    • /
    • 1994
  • Pb($Zr_{0.52}$$Ti_{0.48}$)$O_3$ ceramic thin films were fabricated from an alkoxide-based solution by Sol-Gel method. Pb($Zr_{0.52}$$Ti_{0.48}$)$O_3$ ceramic thin films were formed by spin coating method on Pt/$SiO_2$Si substrate at 4000ppm for 30 seconds. The coating process was repeated 6 times and then heat-treated at temperature between 500∼800[$^{\circ}C$] for 1 hour. The final thickness of the thin films were about 4800[A]. The ferroelectric perovskite phases precipitated under the heat-treated at 700[$^{\circ}C$] for 1 hour. Pb($Zr_{0.52}$$Ti_{0.48}$)$O_3$ thin films heat-treated at 700[$^{\circ}C$] for 1 hour showed good dielectric and ferroclectric properties.

Microstructure Characteristics and Electrical Properties of Sintered $(Bi,La)_4Ti_3O_{12}$ Ferroelectric Ceramics

  • Yoo, H.S.;Son, Y.H.;Hong, T.W.;Ur, S.C.;Ryu, S.L.;Kweon, S.Y.
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part 1
    • /
    • pp.533-534
    • /
    • 2006
  • 1mm-thick BLT ceramics were sintered in accordance with a bulk ceramic fabrication process. All XRD peaks detected in the sintered ceramics were indexed as the Bi-layered perovskite structure without secondary phases. Density was increased with increasing the sintering temperature up to $1050\;^{\circ}C$ and the maximum value was about 98% of the theoretical density. The remanent polarization (2Pr) value of BLT ceramic sintered at $1050\;^{\circ}C$ was approximately $6.5\;{\mu}C/cm^2$ at the applied voltage of 4.5kV. From these results, a BLT ceramic target for plused laser deposition (PLD) system was successfully fabricated.

  • PDF

소결한 $(Bi,La)_4Ti_3O_{12}$ 강유전체 세라믹의 미세구조 및 전기적 특성 (Microstructure Characteristics and Electrical Properties of Sintered $(Bi,La)_4Ti_3O_{12}$ Ferroelectric Ceramics)

  • 유효선;손용호;어순철;류성림;권순용
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2006년도 하계학술대회 논문집 Vol.7
    • /
    • pp.276-277
    • /
    • 2006
  • 1mm-thick BLT ceramics were sintered in accordance with a bulk ceramic fabrication process. AII XRD peaks detected in the sintered ceramics were indexed as the Bi-layered perovskite structure without secondary phases. Density was increased with increasing the sintering temperature up to $1050^{\circ}C$ and the maximum value was about 98% of the theoretical density. The remanent polarization (2Pr) value of BLT ceramic sintered at $1050^{\circ}C$ was approximately $6.5\;{\mu}C/cm^2$ at the applied voltage of 4.5 kV. The calculated electromechanical coupling factor ($k_t$) of it was about 5% and the mechanical quality factor (Qm) was about 2200. From these results, a BLT ceramic target for pulsed laser deposition (PLD) system was successfully fabricated.

  • PDF

Fabrication and Characterization of (1-x)BiFeO3-xBaTiO3 Ceramics Prepared by a Solid State Reaction Method

  • Chandarak, S.;Unruan, M.;Sareein, T.;Ngamjarurojana, A.;Maensiri, S.;Laoratanakul, P.;Ananta, S.;Yimnirun, R.
    • Journal of Magnetics
    • /
    • 제14권3호
    • /
    • pp.120-123
    • /
    • 2009
  • In this study, BiFe$O_3$-BaTi$O_3$ ceramics have been fabricated by a solid-state reaction method. The effects of BaTi$O_3$ content in the (1-x)BiFe$O_3$-xBaTi$O_3$ (x = 0.1, 0.2, 0.25, 0.3, 0.4, 0.5) system on crystal structure and magnetic, dielectric, and ferroelectric properties were investigated. Perovskite BiFe$O_3$ was stabilized through the formation of a solid solution with BaTi$O_3$. Rhombohedrally distorted structure (1-x)BiFe$O_3$-xBaTi$O_3$ ceramics showed strong ferromagnetism at x = 0.5. Dielectric and ferroelectric properties of the BiFe$O_3$-BaTi$O_3$ system also changed significantly upon addition of BaTi$O_3$. It was found that the maximum dielectric and ferroelectric properties were exhibited in the (1-x)BiFe$O_3$-xBaTi$O_3$ system at x = 0.25. This suggested the morphotropic phase boundary (MPB) with the coexistence of both rhombohedral and cubic phases of the (1-x)BiFe$O_3$-xBaTi$O_3$ system at x = 0.25.

Sol-Gel법에 의한 Pb(Zr,Ti)$O_3$ 박막의 제조 및 유전 특성 (Preparation and Dielectric properties of the Pb(Zr,Ti)$O_3$ Thin Film by Sol-Gel Method)

  • 정장호;박인길;류기원;이성갑;이영희
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1995년도 하계학술대회 논문집 C
    • /
    • pp.1022-1024
    • /
    • 1995
  • In this study, $Pb(Zr_xTi_{1-x})O_3$(x=0.65, 0.52, 0.35) thin films were fabricated by Sol-Gel method. A stock solution with excess Pb 10[mol.%] of $Pb(Zr_xTi_{1-x})O_3$ was made and spin-coated on the Pt/$SiO_2$/Si substrate at 4000[rpm] for 30[sec.]. Coated specimens were dried on the hot-plate at $400[^{\circ}C]$ for 10[min.]. Sintering temperature and time were $500{\sim}800[^{\circ}C]$ and $1{\sim}60$[min.]. To investigate crystallization condition, PZT thin films were analyzed with sintering temperature, time and composition by the XRD. The microstructure of thin films were investigated by SEM. The ferroelectric perovskite phases precipitated under the sintering of $700[^{\circ}C]$ for 1 hour. In the PZT(52/48) composition, dielectric constant and dielectric loss were 2133, 2.2[%] at room temperature, respectively.

  • PDF

Sol-Gel법에 의한 Pb($Zr_{0.52}Ti_{0.48}$)$O_3$박막의 유전 및 전기적 특성 (Dielectric and Electrical Properties of the Pb($Zr_{0.52}Ti_{0.48}$)$O_3$ Thin Film by Sol-Gel Method.)

  • 정장호;류기원;배선기;이영희
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1995년도 춘계학술대회 논문집
    • /
    • pp.14-16
    • /
    • 1995
  • Pb($Zr_{0.52}Ti_{0.48}$)$O_3$ ceramic thin films were fabricated from an alkoxide-based solution by Sol-Gel method. Pb($Zr_{0.52}Ti_{0.48}$)$O_3$ co-ramic thin films were formed by spin coating method on Pt/$SiO_2$/Si substrate at 4000[rpm] for 30 [sec]. Coated specimens were dried on the hot-plate at 400[$^{\circ}C$] for 10[min]. The coating process was repeated 6 times and then sintered at temperature between 500 ~ 800[$^{\circ}C$] for 1 hour. The ferroelectric perovskite phases precipitated under the sintering of 700[$^{\circ}C$] for 1 hour. Pb($Zr_{0.52}Ti_{0.48}$)$O_3$ thin film sintered at 700[$^{\circ}C$] for 1hour showed good dielectric constant (2133) and dielectric loss (2.2[%]) Properties. The switching voltage, switching time and leakage currents density were 3.0[V], 1.7[${\mu}$sec] , 160[pA/$\textrm{cm}^2$] repectively.

  • PDF

Sol-Gel법으로 제조한 PLZT 박막의 전기광학특성 (Electrooptic Properties of PLZT Thin Films Prepared by Sol-Gel Method)

  • 이성갑;정장호;배선기;이영희
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1996년도 하계학술대회 논문집 C
    • /
    • pp.1505-1507
    • /
    • 1996
  • In this study, $(Pb_{0.88}La_{0.12})(Zr_{0.40}Ti_{0.60})O_{2.97}$ (La/Zr/Ti=12/40/60) ceramic thin films were fabricated from an alkoxide-based by Sol-Gel method. PLZT stock solutions were made and spin-coated on the ITO-glass rubstrate at 4000[rpm] for 30[sec]. Coated specimens were baked to remove the organic materials at $400[^{\circ}C]$ for 10[min]. This procedure was repeated 5 times. The coated films were finally annealed at $450{\sim}700[^{\circ}C]$ for 1[hr]. The ferroelectric perovskite phases precipitated under the sintering of $550{\sim}700[^{\circ}C]$ for 1[hr]. Relative dielectric constant of the PLZT thin were increased with increasing the sintering temperature, the thin file sintered at $650[^{\circ}C]$ showed the highest value of 196. But in the PLZT thin film sintered at $700[^{\circ}C]$, relative dielectric constant was greatly decreased due to reacts between ITO electrode and glass substrate. In all thin films, the transmittance was more than 70[%] (at 632.8[nm]).

  • PDF

DRAM용 PZT 박막 캐패시터의 유전특성 (Dielectric Properties of the PZT Thin Film Capacitors for DRAM Application)

  • 정장호;박인길;이성갑;이영희
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1995년도 추계학술대회 논문집 학회본부
    • /
    • pp.335-337
    • /
    • 1995
  • In this study, $Pb(Zr_{0.52}Ti_{0.48})O_3$ ceramic thin films were fabricated from an alkoxide-based by Sol-Gel method. $Pb(Zr_{0.52}Ti_{0.48})O_3$ stock solution was made and spin-coated on the $Pt/SiO_2/Si$ substrate at 4000[rpm] for 30[sec]. Coated specimens were dried at 400[$^{\circ}C$] for 10 [min]. The coating process was repeated 4 times and then heat-treated at 500$\sim$800[$^{\circ}C$], 1 hour. The final thickness of the thin films were about 3000[A]. The crystallinity and microstructure of the thin films were investigated for varing the sintering condition. The ferroelectric perovskite' phases precipitated under the sintering of 700[$^{\circ}C$] for 1 hours. In the $Pb(Zr_{0.52}Ti_{0.48})O_3$ thin films sintered at 700[$^{\circ}C$] for 1 hour, dielectric constant and dielectric loss were 2133, 2.2[%] at room temperature, respectively. $Pb(Zr_{0.52}Ti_{0.48})O_3$ thin film capacitors having good dielectric and electrical properties are expected for the application to the dielectric material of DRAM.

  • PDF

Sol-Gel 법으로 제조한 $Pb(Zr_{0.52}Ti_{0.48})O_3$ 박막의 유전 특성 (Dielectric Properties of the $Pb(Zr_{0.52}Ti_{0.48})O_3$ Thin Film by Sol-Gel Method.)

  • 정장호;이영준;이성갑;이영희
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1994년도 하계학술대회 논문집 C
    • /
    • pp.1454-1456
    • /
    • 1994
  • $Pb(Zr_{0.52}Ti_{0.48})O_3$ ceramic thin films were fabricated from an alkoxide-based solution by Sol-Gel method. $Pb(Zr_{0.52}Ti_{0.48})O_3$ ceramic thin films were formed by spin coating method on $Pt/SiO_2/Si$ substrate at 3000rpm for 30 seconds. The coating process was repeated 6 times and then heat-treated at temperature between 500 - $800[^{\circ}C]$ for 1 hour. The final thickness of the thin films were about 4800[A]. The 100% ferroelectric perovskite phases precipitated under the heat treated at $700[^{\circ}C]$ for 1 hour. $Pb(Zr_{0.52}Ti_{0.48})O_3$ thin films heat-treated at $700[^{\circ}C]$ for 1 hour showed good dielectric constant (812) property.

  • PDF

바이오 메디컬용 코어-쉘 구조의 Bi0.5(Na0.78K0.22)0.5TiO3계 무연압전세라믹 소재의 개발 (Development of Bi0.5(Na0.78K0.22)0.5TiO3 Lead-free Piezoelectric Ceramic Material with Core-shell Structure for Biomedical)

  • 윤성준;배준수
    • 산업경영시스템학회지
    • /
    • 제46권3호
    • /
    • pp.15-22
    • /
    • 2023
  • BNKT Ceramics, one of the representative Pb free based piezoelectric ceramics, constitutes a perovskite(ABO3) structure. At this time, the perovskite structure (ABO3) is in the form where the corners of the octahedrons are connected, and in the unit cell, two ions, A and B, are cations, A ion is located at the body center, B ion is located at each corner, and an anion O is located at the center of each side. Since Bi, Na, and K sources constituting the A site are highly volatile at a sintering temperature of 1100℃ or higher, it is difficult to maintain uniformity of the composition. In order to solve this problem, there should be suppression of volatilization of the A site material or additional compensation of the volatilized. In this study, the basic composition of BNKT Ceramics was set to Bi0.5(Na0.78K0.22)0.5TiO3 (= BNKT), and volatile site (Bi, Na, and K sources) were coated in the form of a shell to compensate additionally for the A site ions. In addition, the physical and electrical properties of BNKT and its coated with shell additives(= @BNK) were compared and analyzed, respectively. As a result of analyzing the crystal structure through XRD, both BNKT(Core) and @BNK(Shell) had perovskite phases, and the crystallinity was almost similar. Although the Curie temperature of the two sintered bodies was almost the same (TC = 290 ~ 300 ℃), it was confirmed that the d33 (piezoelectric coefficient) and Pr (residual polarization) values were different. The experimental results indicated that the additional compensation for a shell additive causes the coarsening, resulting in a decrease in sintering density and Pr(remanent polarization). However, coating shell additives to compensate for A site ion is an effective way to suppress volatilization. Based on these experimental results, it would be the biggest advantage to develop an eco-friendly material (Lead-free) that replaced lead (Pb), which is harmful to the human body. This lead-free piezoelectric material can be applied to a biomedical device or products(ex. earphones (hearing aids), heart rate monitors, ultrasonic vibrators, etc.) and skin beauty improvement products (mask packs for whitening and wrinkle improvement).