• Title/Summary/Keyword: Ferroelectric effect

Search Result 265, Processing Time 0.022 seconds

X-ray Scattering Studies for Phase Separated Composite Organic Films

  • Choi, H.;Eom, K.E.;Wang, Q.;Kumar, S.;Kim, J.H.;Shin, S.T.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1229-1232
    • /
    • 2004
  • The ratio of optimized concentration on optical characteristics for phase-separated composite organic films (PSCOF) liquid crystal display is 30% of pre-polymer (NOA65) and 70% of ferroelectric liquid crystal (Felix). The layer structure in ferroelectric liquid crystal cell made by 30% NOA65 and 70% Felix materials is tilt-bookshelf layer structure. The angle of tilt-bookshelf structure are 17$^{\circ}$, 12$^{\circ}$ which are almost same of tilt angle of ferroelectric liquid crystal in Sm $C^{\ast}$ phase. We know that this result is from compensating the layer buckling. In this paper, we will discuss the effect of layer structure in PSCOF cell on ratio of concentration between pre-polymer and liquid crystal by x-ray measurements. We believe that technology of PSCOF is a good solution to solve the problems of align-defect and mechanical shock for future TV application and plastic LCD.

  • PDF

Annealing Effect of Pb(La, Ti)$O_3$Thin Films Grown by Pulsed Laser Deposition for Memory Device Application (메로리 소자 응용을 위한 펄스 레이저 증착법으로 제작된 PLT박막의 열처리 효과)

  • 허창회;심경석;이상렬
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.13 no.9
    • /
    • pp.725-728
    • /
    • 2000
  • Ferroelectric thin film capacitors with high dielectric constant are important for the application of memory devices. In this work, We have systematically investigated the variation of grain sizes depending on the process condition of two-step process. Both in-situ annealing and ex-annealing have been compared depending on the annealing time. C-V measurement, ferroelectric properties, leakage current, XRD and SEM were performed to investigate the electircal properties and microstructural properties of Pb(La, Ti)O$_3$ films.

  • PDF

Ferroelectirc Properties of Sm-doped PZT Thin films (Sm이 첨가된 PZT 박막의 강유전 특성)

  • 손영훈;김경태;김창일;이병기;장의구
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.2
    • /
    • pp.178-183
    • /
    • 2004
  • PBT thin film was known to be a representative for the FeRAM devices because of its good ferroelectric proporties and the ease in fabricating the thin film. However, there have been several problems such as polarization fatigue and leakage current in memory devices with a PZT thin film. In this study, Sm-dolled PZT thin films were fabricated by the so1-gel method, and their ferroelectric and dielectric proportrics were compared as a function of Sm content. We investigated the effect of the Sm dopant on structural and electrical properties of PZT film. Sm-doped PZT thin films on the Pt/Ti/SiO$_2$/Si substrates have been prepared by a sol-gel method. The remanent polarization and coercive field decreased with increasing the concentration of Sm. The dielectric constant and dielectric loss decreased with Increasing Sm content. Sm-doped PZT thin films showed improved fatigue characteristics compared to the undoped PZT thin film.

Theoretical Aspects of PTC Thermistors

  • Cho, Sang-Hee
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.11 s.294
    • /
    • pp.673-679
    • /
    • 2006
  • The discovery of ferroelectric barium titanate (BaTiO$_3$) in 1942 began the present era of dielectrics-based electronic ceramics. Ferroelectric barium titanate has a high dielectric constant and after the recognition of BaTiO$_3$ as a new ferroelectric compound, various attractive electrical properties have been extensively studied and reported. Since then, pioneering work on valence-compensated semiconduction led to the discovery of the positive temperature coefficient (PTC) of the resistance effect found in doped BaTiO$_3$. Significant progress has since followed with respect to understanding the PTC phenomena, advancing materials capabilities, and developing devices for sensor and switching applications. In this paper, the theoretical aspects of the various PTC models are discussed and the future trends of practical applications for PTC devices are briefly mentioned.

Effect of grain size of Pb(La,Ti)O$_3$thin films grown by pulsed laser deposition for memory device application (메모리 소자 응용을 위한 펄스 레이저 증착법으로 제작된 PLT박막의 열처리 효과 연구)

  • 허창회;심경석;이상렬
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.861-864
    • /
    • 2000
  • Ferroelectric thin film capacitors with high dielectric constant are important for the application of memory devices. In this work, thin films of PLT(28)(Pb$\sub$0.72/La$\sub$0.28/Ti$\sub$0.93/O$_3$) were fabricated on Pt/Ti/SiO$_2$/Si substrates in-situ annealing and ex-situ annealing have been compared depending on the annealing time. We have systematically investigated the variation of grain sizes depending on the condition of post-annealing and the variation of deposition rate. C-V measurement, ferroelectric properties, leakage current and SEM were performed to investigate the electrical properties and the microstructural properties of Pb(La,Ti)O$_3$.

  • PDF

Effect of Poling Electric Field and Temperature Change on the Dielectric Anomalies of Relaxor Ferroelectric Strontium-Barium-Niobate Single Crystals

  • Shabbir, Ghulam;Ko, Jae-Hyeon;Kojima, Seiji
    • Journal of the Korean Physical Society
    • /
    • v.73 no.10
    • /
    • pp.1561-1565
    • /
    • 2018
  • The dielectric properties of the uniaxial relaxor ferroelectric $Sr_xBa_{1-x}Nb_2O_6$ with x = 0.75 were investigated along the polar [001] direction as a function of temperature. The capacitance maximum showed the frequency dispersion commonly observed in relaxors. Additional weak dielectric anomalies were observed in the paraelectric phase; they were only seen during the heating process and disappeared upon subsequent cooling. These were attributed to the existence of large polar clusters strongly pinned at defects and/or to random fields and their metastable characters. Aligning the ferroelectric domains along the polar axis at room temperature removed the high-temperature dielectric anomalies. The dependences of the capacitance and the dielectric maximum temperature on the magnitude of the poling field were investigated.

Effect of Ta-Substitution on the Ferroelectric and Piezoelectric Properties of Bi0.5/(Na0.82K0.18)0.5TiO3 Ceramics

  • Do, Nam-Binh;Lee, Han-Bok;Yoon, Chang-Ho;Kang, Jin-Kyu;Lee, Jae-Shin;Kim, Ill-Won
    • Transactions on Electrical and Electronic Materials
    • /
    • v.12 no.2
    • /
    • pp.64-67
    • /
    • 2011
  • The effect of Ta substitution on the crystal structure, ferroelectric, and piezoelectric properties of $Bi_{0.5}(Na_{0.82}K_{0.18})_{0.5}Ti_{1-x}Ta_xO_3$ ceramics has been investigated. The Ta doping resulted in a transition from coexistence of ferroelectric tetragonal and rhombohedral phases to an electrostrictive pseudocubic phase, leading to degradations of the remnant polarization, coercive field, and piezoelectric coefficient $d_{33}$. However, the electricfield-induced strain was significantly enhanced by the Ta substitution-induced phase transition and reached a highest value of $S_{max}/E_{max}$ = 566 pm/V under an applied electric field 6 kV/mm when 2% Ta was substituted on Ti sites. The abnormal enhancement in strain was attributed to the pseudocubic phase with high electrostrictive constants.

Electrical analysis of Metal-Ferroelectric - Semiconductor Field - Effect Transistor with SPICE combined with Technology Computer-Aided Design (Technology Computer-Aided Design과 결합된 SPICE를 통한 금속-강유전체-반도체 전계효과 트랜지스터의 전기적 특성 해석)

  • Kim, Yong-Tae;Shim, Sun-Il
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.12 no.1 s.34
    • /
    • pp.59-63
    • /
    • 2005
  • A simulation method combined with the simulation program with integrated circuit emphasis (SPICE) and the technology computer-aided design (TCAD) has been proposed to estimate the electrical characteristics of the metal-ferroelectric-semiconductor field effect transistor (MFS/MFISFET). The complex behavior of the ferroelectric property was analyzed and surface potential of the channel region in the MFS gate structure was calculated with the numerical TCAD method. Since the calculated surface potential is equivalent with the surface potential obtained with the SPICE model of the conventional MOSFET, we can obtain the current-voltage characteristics of MFS/MFISFET corresponding to the applied gate bias. Therefore, the proposed method will be very useful for the design of the integrated circuits with MFS/MFISFET memory cell devices.

  • PDF

Highly Sensitive Flexible Organic Field-Effect Transistor Pressure Sensors Using Microstructured Ferroelectric Gate Dielectrics

  • Kim, Do-Il;Lee, Nae-Eung
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.277.2-277.2
    • /
    • 2014
  • For next-generation electronic applications, human-machine interface devices have recently been demonstrated such as the wearable computer as well as the electronic skin (e-skin). For integration of those systems, it is essential to develop many kinds of components including displays, energy generators and sensors. In particular, flexible sensing devices to detect some stimuli like strain, pressure, light, temperature, gase and humidity have been investigated for last few decades. Among many condidates, a pressure sensing device based on organic field-effect transistors (OFETs) is one of interesting structure in flexible touch displays, bio-monitoring and e-skin because of their flexibility. In this study, we have investigated a flexible e-skin based on highly sensitive, pressure-responsive OFETs using microstructured ferroelectric gate dielectrics, which simulates both rapidly adapting (RA) and slowly adatping (SA) mechanoreceptors in human skin. In SA-type static pressure, furthermore, we also demonstrate that the FET array can detect thermal stimuli for thermoreception through decoupling of the input signals from simultaneously applied pressure. The microstructured highly crystalline poly(vinylidene fluoride-trifluoroethylene) possessing piezoelectric-pyroelectric properties in OFETs allowed monitoring RA- and SA-mode responses in dyanamic and static pressurizing conditions, which enables to apply the e-skin to bio-monitoring of human and robotics.

  • PDF

Electrocaloric Effect and Hystersis Properties of Pb-free Ferroelectric (Ba0.85Ca0.15)(Ti0.92Zr0.08)O3 Ceramics (무연 강유전 (Ba0.85Ca0.15)(Ti0.92Zr0.08)O3 세라믹스의 전기열량 효과 및 강유전 이력 특성)

  • Kim, You-Seok;Yoo, Ju-Hyun;Jeong, Yeong-Ho;Lee, Jie-Young
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.11
    • /
    • pp.801-805
    • /
    • 2013
  • In this study, electrocaloric effects of Pb-free $(Ba_{0.85}Ca_{0.15})(Ti_{0.92}Zr_{0.08})O_3$ ferroelectric ceramics were investigated and discussed using the characteristics of P-E hysteresis loops at wide temperature range from room temperature to $140^{\circ}C$. The remnant polarization $P_r$ and coercive field $E_c$ were decreased with increasing temperature. The temperature change ${\Delta}T$ by the electrcaloric effect was calculated by Maxwell's relations, and reached the maximum of ~0.15 at $120^{\circ}C$ under applied electric field of 30 kV/cm.