• Title/Summary/Keyword: Ferroelectric domain

Search Result 84, Processing Time 0.027 seconds

Comparison of retention characteristics of ferroelectric capacitors with $Pb(Zr, Ti)O_3$ films deposited by various methods for high-density non-volatile memory.

  • Sangmin Shin;Mirko Hofmann;Lee, Yong-Kyun;Koo, June-Mo;Cho, Choong-Rae;Lee, June-Key;Park, Youngsoo;Lee, Kyu-Mann;Song, Yoon-Jong
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.3 no.3
    • /
    • pp.132-138
    • /
    • 2003
  • We investigated the polarization retention characteristics of ferroelectric capacitors with $Pb(Zr,Ti)O_3$ (PZT) thin films which were fabricated by different deposition methods. In thermally-accelerated retention tests, PZT films which were prepared by a chemical solution deposition (CSD) method showed rapid decay of retained polarization charges as the thickness of the films decreased down to 100 nm, while the films which were grown by metal organic chemical vapor deposition (MOCVD) retained relatively large non-volatile charges at the corresponding thickness. We concluded that in the CSD-grown films, the thicker interfacial passive layer compared with the MOCVD-grown films had an unfavorable effect on retention behavior. We observed the existence of such interfacial layers by extrapolation of the total capacitance with thickness of the films and the capacitance of these layers was larger in MOCVD-grown films than in CSD-grown films. Due to incomplete compensation of surface polarization charges by the free charges in the metal electrodes, the interfacial field activated the space charges inside the interfacial layers and deposited them at the boundary between the ferroelectric layer and the interfacial layer. Such space charges built up an internal field inside the films, which interfered with domain wall motion, so that retention property at last became degraded. We observed less imprint which was a result of less internal field in MOCVD-grown films while large imprint was observed in CSD-grown films.

INVESTIGATION OF DOMAIN STRUCTURES IN $LiNbO_3$ SINGLE CRYSTALS GROWN BY CZOCHRALSKI METHOD

  • Do, Won-Joong;Kyung Joo;Shin, Kwang-Bo;Auh, Keun-Ho
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1998.06a
    • /
    • pp.111-114
    • /
    • 1998
  • Lithium Niobate {{{{ { LiNbO}_{ 3} }}}} single crystals grown by Czichralski method at the congruent composition, have ferroelectric microdomains. These microdomins were investigated by chemical etching with hydrofluoric acid (HF) AND NITRIC ACID ({{{{ { HNO}_{3 } }}}}), and by us ing optical microscopy, scanning electron microscopy and atomic force microscopy

  • PDF

EFFECT OF POLING ON THE PHYSICAL PIEZOELECTRIC PROPERTIES OF $LiNbO_3$

  • Han, Ji-Woong;Kyung Joo;Shim, Kwang-Bo;Auh, Keun-Ho
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1998.06a
    • /
    • pp.133-136
    • /
    • 1998
  • Undoped and 5mol%MgO DOPED {{{{ { LiNbO}_{ 3} }}}} were grown by floating zone method. The grown crystals were poled to c-azis in different electric conditions. Ferroelectric domain patterns related to the poling conditions were investigated by chemical etching and the poling effects on the piezoelectric in the undoped and MgO doped Crystals were studied.

  • PDF

Influence of Illumination on Domain Switching and Photovoltaic Current in Poled $(Pb_{1x}La_x)TiO_3$ Freeoelectric Ceramics

  • Park, Si-Kyung;Park, Dong-Gu;Kim, Sung-Ryul
    • The Korean Journal of Ceramics
    • /
    • v.6 no.3
    • /
    • pp.267-271
    • /
    • 2000
  • The influence of photoexcited nonequilibrium carriers on domain switching and photovoltaic current was investigated in two kinds of poled La-modified PbTiO$_3$ferroelectric ceramics, (Pb$_{0.85}$La$_{0.15}$)TiO$_3$and (Pb$_{0.76}$La$_{0.24}$)TiO$_3$, under illumination in the absence of external electric field. Both photovoltaic current and cumulative AE event counts increased with illumination time. The observed nonsteady-state photovoltaic current could be explained on the basis of the cycles of a series of physical events consisting the establishment of space charge field by photoexcited carriers trapped at the grain boundaries, the photoinduced domain switching, and the increase in the remanent polarization. An analysis of energy distribution of the observed AE signals also revealed that the space charge field in (Pb$_{0.85}$La$_{0.15}$)TiO$_3$allowed both 18$0^{\circ}C$ and 90$^{\circ}$domains to be switched during illumination.

  • PDF

Direct Imaging of Polarization-induced Charge Distribution and Domain Switching using TEM

  • O, Sang-Ho
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.99-99
    • /
    • 2013
  • In this talk, I will present two research works in progress, which are: i) mapping of piezoelectric polarization and associated charge density distribution in the heteroepitaxial InGaN/GaN multi-quantum well (MQW) structure of a light emitting diode (LED) by using inline electron holography and ii) in-situ observation of the polarization switching process of an ferroelectric Pb(Zr1-x,Tix)O3 (PZT) thin film capacitor under an applied electric field in transmission electron microscope (TEM). In the first part, I will show that strain as well as total charge density distributions can be mapped quantitatively across all the functional layers constituting a LED, including n-type GaN, InGaN/GaN MQWs, and p-type GaN with sub-nm spatial resolution (~0.8 nm) by using inline electron holography. The experimentally obtained strain maps were verified by comparison with finite element method simulations and confirmed that not only InGaN QWs (2.5 nm in thickness) but also GaN QBs (10 nm in thickness) in the MQW structure are strained complementary to accommodate the lattice misfit strain. Because of this complementary strain of GaN QBs, the strain gradient and also (piezoelectric) polarization gradient across the MQW changes more steeply than expected, resulting in more polarization charge density at the MQW interfaces than the typically expected value from the spontaneous polarization mismatch alone. By quantitative and comparative analysis of the total charge density map with the polarization charge map, we can clarify what extent of the polarization charges are compensated by the electrons supplied from the n-doped GaN QBs. Comparison with the simulated energy band diagrams with various screening parameters show that only 60% of the net polarization charges are compensated by the electrons from the GaN QBs, which results in the internal field of ~2.0 MV cm-1 across each pair of GaN/InGaN of the MQW structure. In the second part of my talk, I will present in-situ observations of the polarization switching process of a planar Ni/PZT/SrRuO3 capacitor using TEM. We observed the preferential, but asymmetric, nucleation and forward growth of switched c-domains at the PZT/electrode interfaces arising from the built-in electric field beneath each interface. The subsequent sideways growth was inhibited by the depolarization field due to the imperfect charge compensation at the counter electrode and preexisting a-domain walls, leading to asymmetric switching. It was found that the preexisting a-domains split into fine a- and c-domains constituting a $90^{\circ}$ stripe domain pattern during the $180^{\circ}$ polarization switching process, revealing that these domains also actively participated in the out-of-plane polarization switching. The real-time observations uncovered the origin of the switching asymmetry and further clarified the importance of charged domain walls and the interfaces with electrodes in the ferroelectric switching processes.

  • PDF

Influence of Electric Poling an Fracture Toughness of Ferroelectric-Ferroelastic PZT Ceramics

  • Zuokai Ke;Sunggi Baik
    • The Korean Journal of Ceramics
    • /
    • v.1 no.4
    • /
    • pp.197-203
    • /
    • 1995
  • Nearly fully dense PZT samples both with tetragonal and with morphotropic phase boundary compositions were prepared by the conventional powder processing and sintering. A micro-indentation technique was used to evaluate the dependence of fracture toughness on remanent polarization, crack length and the direction of crack propagation. The result shows that the toughness increases with the remanent polarization along the poling direction and decreases in the transverse direction. The dependence of toughness on the remanent polarization is neither symmetric nor linear but rather shown to be saturated quickly with the increase in remanent polariztion. R-curve behaviors are observed in both poled and unpoled samples. Sequential SEM and XRD studies on annealed, poled, ground, fractured and etched samples show that domain switching is evident as a viable toughening mechanism but might depend upon the rate of crack propagation. Grain bridging is also observed as one of the active toughening mechanisms.

  • PDF

Field Induced Phase Transition in $0.6Pb(Ni_{1/3}Nb_{2/3})O_3-0.31PbTiO_3-0.09PbZrO_3$ Relaxor Ferroelectrics ($0.6Pb(Ni_{1/3}Nb_{2/3})O_3-0.31PbTiO_3-0.09PbZrO_3$ 완화형 강유전체의 전계 유기 상전이 현상)

  • 윤만순;장현명;정회승;최병철
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.6
    • /
    • pp.620-628
    • /
    • 1997
  • The possibility of the existence of a field-induced micro-macrodomain switching was proposed and examined using 9 mol % PbZrO3-doped 0.6Pb(Ni1/3Nb2/3)O3-PbTiO3 (PNN-PT) systems having rhombohedral symmetry at room temperature. the thermally depoled (freshly prepard) specimens prepared from the rhombohedral side of the system exhibited a relaxor behavior for the whole range of temperature examined (for T

  • PDF

An Investigation on the Aging Properties of NKN Lead-free Piezoelectric Multi-layer Ceramic Actuators (NKN 무연압전 액추에이터의 신뢰성 연구)

  • Chae, Moon-Soon;Lee, Ku-Tak;Koh, Jung-Hyuk
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.10
    • /
    • pp.803-806
    • /
    • 2011
  • 1 mol% $Li_2O$ excess $0.9(Na_{0.52}K_{0.48})NbO_3-0.1LiTaO_3$ lead-free piezoelectric multilayer ceramic actuators were investigated to determine their aging properties. To reduce the thermal aging behavior, we applied a rectified unipolar electric field of 5 kV/mm to the specimen to accelerate the electric aging behavior. By employing a rectified unipolar electric field for the piezoelectric actuators, we could remove undesirable heating from the relaxation current in the motion of the ferroelectric domain. To accelerate the aging test, the applied electric fields had a frequency of 900 Hz. To have enough time for charging and discharging, we employed an accurate time constant to design the equivalent circuit model for the aging tester. To extract exact aging behavior, we measured the pseudo-piezoelectric coefficient before and after the aging process. We also measured the electro-mechanical coupling coefficient, the frequency-dependent dielectric permittivity, and the impedance to compare with fresh and aged specimen.