• Title/Summary/Keyword: Ferroelectric RAM

Search Result 53, Processing Time 0.023 seconds

Effects of Substrate Temperatures on the Crystallinity and Electrical Properties of PLZT Thin Films (기판온도에 따른 PLZT 박막의 결정성과 전기적 특성)

  • Lee, In-Seok;Yoon, Ji-Eun;Kim, Sang-Jih;Son, Young-Guk
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.1
    • /
    • pp.29-34
    • /
    • 2009
  • PLZT thin films were deposited on platinized silicon (Pt/$TiSiO_2$/Si) substrate by RF magnetron sputtering. A $TiO_2$ buffer layer was fabricated, prior to deposition of PLZT films. the layer was strongly affected the crystallographic orientation of the PLZT films. X-ray diffraction was performed on the films to study the crystallization of the films as various substrate temperatures (Ts). According to increasing Ts, preferred orientation of films was changed (110) plane to (111) plane. The ferroelectric, dielectric and electrical properties of the films were also investigated in detail as increased substrate temperatures. The PLZT films deposited at $400^{\circ}C$ showed good ferroelectric properties with the remnant polarization of $15.8{\mu}C/cm^2$ and leakage current of $5.4{\times}10^{-9}\;A/cm^2$.

Fabrication and Properties of MFISFET using SrBi2Ta2O9SiN/Si Structures (SrBi2Ta2O9SiN/Si 구조를 이용한 MFISFET의 제작 및 특성)

  • 김광호
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.5
    • /
    • pp.383-387
    • /
    • 2002
  • N-channel metal-ferroelectric-insulator-semiconductor field-effect-transistors (MFISFET's) by using $SrBi_2Ta_2O_9$/Silicon Nitride/Si (100) structure were fabricated. The fabricated devices exhibit comfortable memory windows, fast switching speeds, good fatigue resistances, and long retention times that are suitable for advanced ferroelectric memory applications. The estimated switching time and polarization ($2P_r$) of the fabricated FET measured at applied electric field of 376 kV/cm were less than 50 ns and about 1.5 uC/$\textrm{cm}^2$, respectively. The magnitude of on/off ratio indicating the stored information performance was maintained more than 3 orders until 3 days at room temperature. The $I_DV_G$ characteristics before and after being subjected to $10^11$ cycles of fatigue at a frequency of 1 MHz remained almost the same except a little distortion in off state.

Fabrication of Nd-Substituted Bi4Ti3O12 Thin Films by Metal Organic Chemical Vapor Deposition and Their Ferroelectrical Characterization

  • Kim, Hyoeng-Ki;Kang, Dong-Kyun;Kim, Byong-Ho
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.4
    • /
    • pp.219-223
    • /
    • 2005
  • A promising capacitor, which has conformable step coverage and good uniformity of thickness and composition, is needed to manufacture high-density non-volatile FeRAM capacitors with a stacked cell structure. In this study, ferroelectric $Bi_{3.61}Nd_{0.39}Ti_3O_{12}$ (BNdT) thin films were prepared on $Pt(111)/TiO_2/SiO_2/Si$ substrates by the liquid delivery system MOCVD method. In these experiments, $Bi(ph)_{3}$, $Nd(TMHD)\_{3}$ and $Ti(O^iPr)_{2}(TMHD)_{2}$ were used as the precursors and were dissolved in n-butyl acetate. The BNdT thin films were deposited at a substrate temperature and reactor pressure of approximately $600^{\circ}C$ and 4.8 Torr, respectively. The microstructure of the layered perovskite phase was observed by XRD and SEM. The remanent polarization value (2Pr) of the BNdT thin film was $31.67\;{\mu}C/cm^{2}$ at an applied voltage of 5 V.

Dielectric properties of $Bi_{3.25}La_{0.75}Ti_3O_{12}$ thin films with Bi contents (Bi 첨가량에 따른 BLT 박막의 유전특성)

  • 김경태;김창일;강동희;심일운
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07a
    • /
    • pp.371-374
    • /
    • 2002
  • Bismuth lanthanum titanate thin films with excess Bi contents were prepared onto Pt/Ti/$SiO_2$/Si substrate by metalorganic decomposition (MOD) technique. The structure and morphology of the films were analyzed using X-ray diffraction (XRD) and atomic force microscopy (AFM), respectively. From the XRD analysis, BLT thin films show polycrystalline structure and the layered-perovskite phase was obtained over 10% excess of Bi contents. As a result of ferroelectric characteristics related to the Bi content of the BLT thin film, the remanent polarization and dielectric constant decreased with increasing over Bi content of 10 % excess. The BLT film with Bi content of 10% excess was measured to have a dielectric constant of n9 and dielectric loss of 1.85[%]. The BLT thin films showed little polarization fatigue test up to 3.5 x $10^{9}$ bipolar switching cycling.

  • PDF

temperature synthesis and ferroelectric properties of (117)-oriented $Bi_{3.25}La_{0.75}Ti_3O_{12}$ thin films on $LaNiO_3$ electrodes

  • Kim, Kyoung-Tae;Kim, Chang-Il
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.264-267
    • /
    • 2004
  • [ $Bi_{3.25}La_{0.75}Ti_3O_{12}$ ] (BLT) thin films were prepared by using metal organic decomposition method onto the $LaNiO_3$ (LNO) bottom electrode. Both the structure and morphology of the films were analyzed by x-ray diffraction (XRD) and atomic force microscope (AFM). Even at low temperatures ranging from 450 to $650^{\circ}C$, the BLT thinfilms were successfully deposited on LNO bottom electrode and exhibited (117) orientation. The BLT thin films annealed as low as $600^{\circ}C$ showed excellent ferroelectricity, higher remanent polarization and no significant degradation of switching charge at least up to $5{\times}10^9$ switching cycles at a frequency of 100 kHz and 5 V. For the annealing temperature of $600^{\circ}C$, the remanent polarization Pr and coercive field were $23.5\;C/cm^2$ and 120 kV/cm, respectively.

  • PDF

X-ray Photoelectron Spectroscopic Study of $Ge_{2}Sb_{2}Te_{5}$ and Its Etch Characteristics in Fluorine Based Plasmas

  • Jeon, Min-Hwan;Gang, Se-Gu;Park, Jong-Yun;Yeom, Geun-Yeong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2009.05a
    • /
    • pp.110-110
    • /
    • 2009
  • 최근 차세대 비휘발성 메모리(NVM) 기술은 메모리의 성능과 기존의 한계점을 효과적으로 극복하며 활발한 연구를 통해 비약적으로 발전하고 있으며 특히, phase-change random access memory (PRAM)은 ferroelectric random access memory (FeRAM)과 magneto-resistive random access memory (MRAM)과 같은 다른 NVM 소자와 비교하여 기존의 DRAM과 구조적으로 비슷하고 상용화가 빠르게 진행될 수 있을 것으로 예상되는 바, PRAM에 사용되는 상변화 물질의 식각을 수행하고 X-ray photoelectron spectroscopy (XPS)를 통해 표면의 열화현상을 관찰하였다.

  • PDF

Failure Analysis of Ferroelectric $(Bi,La)_4Ti_3O_{12}$ Capacitor in Fabricating High Density FeRAM Device (고밀도 강유전체 메모리 소자 제작 시 발생하는 $(Bi,La)_4Ti_3O_{12}$ 커패시터의 불량 분석)

  • Kim, Young-Min;Jang, Gun-Eik;Kim, Nam-Kyeong;Yeom, Seung-Jin;Hong, Suk-Kyoung;Kweon, Soon-Yong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.257-257
    • /
    • 2007
  • 고밀도 FeRAM (Ferroe!ectric Random Access Memory) 소자를 개발하기 위해서는 강유전체 물질을 이용한 안정적인 스텍형의 커패시터 개발이 필수적이다. 특히 $(Bi,La)_4Ti_3O_{12}$ (BLT) 강유전체 물질을 이용하는 경우에는 낮은 열처리 온도에서도 균질하고 높은 값의 잔류 분극 값을 확보하는 것이 가장 중요한 과제 중의 하나이다. 불행히도, BLT 물질은 a-축으로는 약 $50\;{\mu}C/cm^2$ 정도의 높은 잔류 분극 값을 갖지만, c-축 방향으로는 $4\;{\mu}C/cm^2$ 정도의 낮은 잔류 분극 값을 나타내는 동의 강한 비등방성 특성을 보인다. 따라서 BLT 박막에서 각각 입자들의 크기 및 결정 방향성을 세밀하게 제어하는 것은 무엇보다 중요하다. 본 연구에서는 16 Mb의 1T/1C (1-transistor/1-capacitor) 형의 FeRAM 소자를 BLT 박막을 적용하여 제작하였다. 솔-젤 (sol-gel) 용액을 이용하여 스핀코팅법으로 BLT 박막을 증착하고, 후속 열처리 공정을 RTP (rapid thermal process) 공정을 이용하여 수행하였다. 커패시터의 하부 전극 및 상부 전극은 각각 Pt/IrOx/lr 및 Pt을 적용하였다. 반응성 이온 에칭 (RIE: reactive ion etching) 공정을 이용하여 커패시터를 형성시킨 후, 32k-array (unit capacitor: $0.68\;{\mu}m$) 패턴에서 측정한 스위칭 분극 (dP=P*-P^) 값은 약 $16\;{\mu}C/cm^2$ 정도이고, 웨이퍼 내에서의 균일도도 2.8% 정도로 매우 우수한 특성을 보였다. 그러나 단위 셀들의 특성을 평가하기 위하여 bit-line의 전압을 측정한 결과, 약 10% 정도의 커패시터에서 불량이 발생하였다. 그리고 이러한 불량 젤들은 매우 불규칙적으로 분포함을 확인할 수 있었다. 이러한 불량 원인을 파악하기 위하여 양호한 젤과 불량이 발생한 셀에서의 BLT 박막의 미세구조를 분석하였다. 양호한 셀의 BLT 박막 입자들은 불량한 셀에 비하여 작고 비교적 균일한 크기를 갖고 있었다. 이에 비하여 불량한 셀에서의 BLT 박막에는 과대 성장한 입자들이 존재하고 이에 따라서 입자 크기가 매우 불균질한 것으로 확인되었다. 또 이러한 과대 성장한 입자들은 거의 모두 c-축 배향성을 나타내었다. 이상의 실험 결과들로부터, BLT 박막을 이용하여 제작한 FeRAM 소자에서 발생하는 불규칙한 셀 불량의 주된 원인은 c-축 배향성을 갖는 과대 성장한 입자의 생성임을 알 수 있었다. 즉 BLT 박막을 이용하여 FeRAM 소자를 제작하는 경우, 균일한 크기의 입자 및 c-축 배향성의 입자 억제가 매우 중요한 기술적 요소임을 알 수 있었다.

  • PDF

Preparation of a Bi$_{4}$Ti$_{3}$O$_{12}$ Thin Film and Its Electrical Properties (Bi$_{4}$Ti$_{3}$O$_{12}$ 박막의 제작과 그 특성에 관한 연구)

  • Gang, Seong-Jun;Jang, Dong-Hun;Min, Gyeong-Jin;Kim, Seong-Jin;Jeong, Yang-Hui;Yun, Yeong-Seop
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.37 no.4
    • /
    • pp.7-14
    • /
    • 2000
  • A Bi$_{4}$Ti$_{3}$O$_{12}$ (BIT) thin film is prepared by sol-gel method using acetate precursors and evaluated whether it could be applied to NVFRAM (Non-Volatile Ferroelectric RAM). The drying and the annealing temperature are 40$0^{\circ}C$ and $650^{\circ}C$, respectively and they are determined from the DT-TG (Differential Thermal-Thermal Gravimetric) analysis. The BIT thin film deposited on Pt/Ta/SiO$_{2}$/Si substrate shows orthorhombic perovskite phase. The grain size and the surface roughness are about 100 nm and 70.2$\AA$, respectively. The dielectric constant and the loss tangent at 10 KHz are 176 and 0.038, respectively, and the leakage current density at 100 ㎸/cm is 4.71 $mutextrm{A}$/$\textrm{cm}^2$. In the results of hysteresis loops measured at $\pm$250 ㎸/cm, the remanent polarization (Pt) and the coercive field (Ec) are 5.92 $\mu$C/$\textrm{cm}^2$ and 86.3 ㎸/cm, respectively. After applying 10$^{9}$ square pulses of $\pm$5V, the remanent polarization of the BIT thin film decreases as much as about 33% from 5.92 $\mu$C/$\textrm{cm}^2$ of initial state to 3.95 $\mu$C/$\textrm{cm}^2$.

  • PDF

A High Performance Flash Memory Solid State Disk (고성능 플래시 메모리 솔리드 스테이트 디스크)

  • Yoon, Jin-Hyuk;Nam, Eyee-Hyun;Seong, Yoon-Jae;Kim, Hong-Seok;Min, Sang-Lyul;Cho, Yoo-Kun
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.14 no.4
    • /
    • pp.378-388
    • /
    • 2008
  • Flash memory has been attracting attention as the next mass storage media for mobile computing systems such as notebook computers and UMPC(Ultra Mobile PC)s due to its low power consumption, high shock and vibration resistance, and small size. A storage system with flash memory excels in random read, sequential read, and sequential write. However, it comes short in random write because of flash memory's physical inability to overwrite data, unless first erased. To overcome this shortcoming, we propose an SSD(Solid State Disk) architecture with two novel features. First, we utilize non-volatile FRAM(Ferroelectric RAM) in conjunction with NAND flash memory, and produce a synergy of FRAM's fast access speed and ability to overwrite, and NAND flash memory's low and affordable price. Second, the architecture categorizes host write requests into small random writes and large sequential writes, and processes them with two different buffer management, optimized for each type of write request. This scheme has been implemented into an SSD prototype and evaluated with a standard PC environment benchmark. The result reveals that our architecture outperforms conventional HDD and other commercial SSDs by more than three times in the throughput for random access workloads.

The Study on the Surface Reaction of $SrBi_{2}Ta_{2}O_{9}$ Film by Magnetically Enhanced Inductively Coupled Plasma (MEICP 식각에 의한 SBT 박막의 표면 반응 연구)

  • Kim, Dong-Pyo;Kim, Chang-Il
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.37 no.4
    • /
    • pp.1-6
    • /
    • 2000
  • Recently, SrBi$_{2}$Ta$_{2}$ $O_{9}$(SBT) and Pb(Zr,Ti) $O_{3}$(PZT) were much attracted as materials of capacitor for ferroelectric random access memory(FRAM) with higher read/ write speed, lower power consumption and nonvolartility. SBT thin film has appeared as the most prominent fatigue free and low operation voltage. To highly integrate FRAM, SBT thin film has to be etched. A lot of papers have been reported over growth of SBT thin film and its characteristics. However, there are few reports about etching SBT thin film owing to difficult of etching ferroelectric materials. SBT thin film was etched in CF$_{4}$Ar plasma using magnetically enhanced inductively coupled plasma (MEICP) system. In order to investigate the chemical reaction on the etched surface of SBT thin films, X-ray Photoelecton spectrosocpy (XPS) and Secondary ion mass spectroscopy(SIMS) was performed.

  • PDF