• Title/Summary/Keyword: Ferrite refinement

Search Result 29, Processing Time 0.027 seconds

Effects of pulsed laser surface remelting on microstructure, hardness and lead-bismuth corrosion behavior of a ferrite/martensitic steel

  • Wang, Hao;Yuan, Qian;Chai, Linjiang;Zhao, Ke;Guo, Ning;Xiao, Jun;Yin, Xing;Tang, Bin;Li, Yuqiong;Qiu, Shaoyu
    • Nuclear Engineering and Technology
    • /
    • v.54 no.6
    • /
    • pp.1972-1981
    • /
    • 2022
  • A typical ferritic/martensitic (F/M) steel sheet was subjected to pulsed laser surface remelting (LSR) and corrosion test in lead-bismuth eutectic (LBE) at 550 ℃. There present two modification zones with distinct microstructures in the LSRed specimen: (1) remelted zone (RZ) consisting of both bulk δ-ferrite grains and martensitic plates and (2) heat-affected zone (HAZ) below the RZ, mainly composed of martensitic plates and high-density precipitates. Martensitic transformation occurs in both the RZ and the HAZ with the Kurdjumov-Sachs and Nishiyama-Wassermann orientation relationships followed concurrently, resulting in scattered orientations and specific misorientation characteristics. Hardnesses of the RZ and the HAZ are 364 ± 7 HV and 451 ± 15 HV, respectively, considerably higher than that of the matrix (267 ± 3 HV). In oxygen-saturated and oxygen-depleted LBE, thicknesses of oxide layers developed on both the as-received and the LSRed specimens increase with prolonging corrosion time (oxide layers always thinner under the oxygen-depleted condition). The corrosion resistance of the LSRed F/M steel in oxygen-saturated LBE is improved, which can be attributed to the grain-refinement accelerated formation of dense Fe-Cr spinel. In oxygen-depleted LBE, the growth of oxide layers is very low with both types of specimens showing similar corrosion resistance.

Microstructures and Tensile Properties by Multi-step Isothermal Heat Treatment in Conventional TRIP Steel (상용 TRIP강의 다단 항온 변태 열처리에 따른 미세조직 및 인장 특성)

  • Kim, Kyeong-Won;Lee, Chang-Hoon;Kang, Jun-Yun;Lee, Tae-Ho;Cho, Kyung-Mox
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.29 no.3
    • /
    • pp.103-108
    • /
    • 2016
  • In recent years, TRIP steels which are composed of ferrite, bainite, and retained austenite have drawn much attention for automotive sheets due to excellent combination of strength and ductility. The effect of two-step isothermal heat treatment of bainitic transformation on microstructures, especially retained austenites and tensile properties in the conventional TRIP steel was investigated. A two-step isothermal heat treatment, in which 50% bainitic transformation occurred at high temperature, followed by bainitic transformation at low temperature, improves tensile properties, resulting from enhanced mechanical stability of retained austenite against external plastic deformation due to refinement of retained austenites, compared to single-step isothermal heat treatment.

MICROSTRUCTURAL EVOLUTION OF SHAPEO-CHARGE LINER AND TARGET MATEREALS DURING BALLISTIC TEST (관통 시험된 성형장약탄 라이너와 타겟 재료에 있어서의 미세조직 변화)

  • Hong, Mun-Hui;Lee, Seong;Roh, Jun-Ung;Baek, Un-Hyueong
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2001.11a
    • /
    • pp.46-46
    • /
    • 2001
  • The microstructure of the 1020 mild steel target in the region ahead of craters, made by colliding against Cu and W-Cu shaped-charge jets. has been investigated in the present work. The region ahead of the crater impacted by the Cu shaped-charge jet reveals grain refinement implying the formation of sub-grains, while that of W-Cu one leads to martensitic transformation indicating that the region was heated up to an austenitic region which was followed by rapid cooling. The pressure of W-Cu shaped-charge jet impacting against the target when calculated is higher than that of Cu one. The microhardness of the region ahead of the crater impacted by the W-Cu shaped-charge jet is also higher than that of the Cu one. The microstructure of W-Cu slug that remains inside of the crater depicts the occurrence of the remarkable elongation of W particles during the liner collapse. The microstructural evolution of the region ahead of the crater is discussed on the basis of the pressure dependency of the ferrite/austenite transformation in the steel.

  • PDF

Quantitative analysis of Precipitate Using Transformation in Nb Added Low Carbon Steels (Nb 첨가 저합금강의 상변태를 이용한 석출물 정량분석)

  • Kang, H.C.;Lee, S.H.;Kim, N.S.;Lee, K.J.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.16 no.1
    • /
    • pp.10-15
    • /
    • 2003
  • In Nb, V and Ti added steels, carbo-nitrides are formed due to their strong interaction with C and N. The formation of carbo-nitrides has an important role to control the microstructure as well as mechanical properties by grain size refinement and precipitation hardening. However, the quantitative analysis of distribution of precipitates and the effect of precipitates on the phase transformation and mechanical properties are still far from satisfactory. In this study, the quantitative analysis of precipitates in austenite was investigated using the fact that the formation of precipitates in Nb, V and Ti added steels accelerates austenite/ferrite transformation. The formation of precipitates was controlled by adjusting holding temperature and time in austenite region, transformed Volume fractions were measured by dilatometer during slow cooling, Iso-precipitation kinetics were determined by comparing 5% and 50% volumes transformed at various conditions respectively. The result was compared with the calculated.

A Study on the Microstryctural Evoulution of the Reagion Aheas of Craters Created by Copper and W-Cu Shaped Charge Jets (W-Cu와 Cu의 고속 충돌에 의한 연강의 미세조직 변화)

  • Lee, Seong;Hong, Moon-Hee;Baek, Woon-Hyung
    • Journal of Powder Materials
    • /
    • v.6 no.1
    • /
    • pp.69-74
    • /
    • 1999
  • The microstructure of the reagion of carters, created by Cu and W-Cu shaped charge jets, in a 1020 mild steel target has been intestiaged. The region ahead of the crater created by the Cu shaped charge jet, reveals dramatic grain refinement implying the occurrence of a dynamic recrystallization, while that of W-Cu one dose a martensitic transformation indicative of heating up to an austenitic region followed by rapid cooling.The impacting pressure calculated when the W-Cu shaped charge jet encounters the target is higher than that of the Cu one. The micro-hardness of the region ahead of the crater created by the W-Cu shaped charge jet is also higher than that of the Cu one. The microstructure of W-Cu slug remained in the inside of the craters depicts the occurrence of the remarkable elongation of W particles during the liner collaphse. From these results, the microstructural variation of the region ahead of the crater with Cu and W-Cu shaped charge jets is discussed in trems of the pressure dependency of the transformation region of ferrite and austenite phases.

  • PDF

Microstructure Evolution and Its Effect on Strength during Thermo-mechanical Cycling in the Weld Coarse-grained Heat-affected Zone of Ti-Nb Added HSLA Steel (Ti-Nb첨가 저합금강 용접열영향부에서의 열-응력 이력이 미세조직 및 기계적 성질에 미치는 영향에 관한 연구)

  • Moon, Joonoh;Lee, Changhee
    • Journal of Welding and Joining
    • /
    • v.31 no.6
    • /
    • pp.44-49
    • /
    • 2013
  • The influence of thermo-mechanical cycling on the microstructure and strength in the weld coarse-grained heat affected zone (CGHAZ) of Ti-Nb added low carbon HSLA steel was explored through Vickers hardness tests, nanoindentation experiments, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) analysis. Undeformed and deformed CGHAZs were simulated using Gleeble simulator with different heat inputs of 30kJ/cm and 300kJ/cm. At high heat input of 300kJ/cm, the CGHAZ consisted of ferrite and pearlite and then their grain sizes were not affected by deformation. At low heat input of 30kJ/cm, the CGHAZ consisted of lath martensite and then the sizes of prior austenite grain, packet and lath width decreased with deformation. In addition, the fraction of particle increased with deformation and this is because the precipitation kinetics was accelerated by deformation. Meanwhile, the Vickers and nanoindentation hardness of deformed CGHAZ with 30kJ/cm heat input were higher than those of undeformed CGHAZ, which are due to the effect of grain refinement and precipitation strengthening.

Effects of Carbon and Sulfur Content on Mechanical Properties of High Purity Steel (고순도강의 기계적 성질에 미치는 탄소 및 황 함량의 영향)

  • Yoon, Jeong-Bong;Kim, Sung-Il;Kim, In-Bea
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.6
    • /
    • pp.331-337
    • /
    • 2009
  • To lower the annealing temperature and the deviation of the mechanical properties of bake hardening steels, high purity steels were investigated. The steels were characterized by treating at low recrystallization temperature. It was confirmed that the strengthening originated from the solid solution of carbon and the ferrite grain refinement by fine MnS precipitates as carbon and sulfur contents increased in high purity steels. However, it was observed that there was no more increase of strength in steels containing over 40 ppm of carbon. It was considered that the excess carbon formed either the carbon cluster or the low temperature unstable carbides which had the negligible effect on the strengthening because they were reported to be highly coherent with the matrix. The carbon cluster and unstable carbides could be transformed to the stable cementite during bake hardening treatment. MnS was not observed in the high purity steel containing 5 ppm S, resulting in very coarse recrystallized grains and good ductility. As sulfur content increased, the recrystallized grain size decreased due to the formation of the fine MnS precipitates.

Effects of Alloying Elements(Sb, Ti) on Damping Capacity and Mechanical Properties In 3.6%C Gray Cast Iron (3.6%C 회주철의 진동감쇠능 및 기계적 성질에 미치는 Sb 및 Ti 첨가의 영향)

  • Kim, J.C.;Han, D.W.;Baik, S.H.;Choi, C.S.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.14 no.6
    • /
    • pp.330-335
    • /
    • 2001
  • Flake graphite cast irons with the high damping capacity have been used for the control of vibration and noise occurring in the members of various mechanical structures under vibrating conditions. However, the damping capacity which Is morphological characteristics of graphite is one of the important factors in reducing the vibration and noise, but hardly any work has deal with this problem. Therefore, the authors have examined the damping capacity of various cast irons with alloying elements and studied the influences of the matrix structures, mechanical properties and morphological characteristics of graphite. The main results obtained are as follows: Effects of Sb on the damping capacities and mechanical properties have been investigated in 3.6%C-0.2%Ni gray cast iron. At 0.02%Sb, specific damping capacity showed the maximum value, and decreased with further increase in Sb content. Mechanical properties showed opposite trend with the damping capacity. And then, effects of Ti on the damping capacities and mechanical properties have been investigated in 3.6%C-0.2%Ni-0.02%Sb gray cast iron. Specific damping capacity increased with increase in Ti content. Graphite length also showed same behavior. Tensile strength increased with Ti content due to refinement of pearlite. In the case of 0.14%Ti addition in 3.6%C-0.2%Ni-0.02%Sb cast iron, specific damping capacity and tensile strength was 36% and 25 $kgf/mm^2$ which are higher than 32% and 15 $kgf/mm^2$ at 3.6%C-0.2%Ni cast iron respectively.

  • PDF

Microstructure and Abnormal Grain Coarsening Behavior of Nb-microalloyed Steel (Nb 첨가 합금강의 미세조직과 결정립 조대화 거동)

  • Sungjin Kim;Jeonghu Choi;Minhee Kim;Minhwan Ryu;Jaehyun Park;Jaehyeok Sin;Woochul Shin;Minwook Kim;Jae-Gil Jung;Seok-Jae Lee
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.37 no.4
    • /
    • pp.155-162
    • /
    • 2024
  • SCr420H steel which is commonly utilized for automotive components requires the carburizing heat treatment process. Abnormal grain growth during this treatment significantly affects the mechanical properties of the steel parts. Consequently, a process designed to prevent abnormal grain growth at certain elevated temperatures is essential. For enhanced grain refinement, we considered the addition of Nb in SCr420H steel. The experimental condition of the carburizing heat treatment involved reheating the steel sample to temperatures between 940℃ and 1080℃. Using scanning electron microscopy, we examined the microstructure of specimens treated with the secondary solution, revealing an organization of bainite and ferrite. Transmission electron microscopy was utilized to determine the type, shape, and size of the carbonitrides, showing a high fraction of AlN at the secondary solution treatment temperature of approximately 1050℃ and of (Nb,Ti)(C,N) around 1200℃. AlN particles measured about 100 nm and (Nb,Ti)(C,N) about 50 nm. Optical microscopy was utilized to assess grain size variations at different secondary solution treatment temperatures. It is noted that the temperature at which abnormal grain coarsening occurred rose with increasing secondary solution treatment temperatures, indicating a greater influence of (Nb,Ti)(C,N) with higher heat treatment temperatures. This research provides reference data for preventing abnormal grain growth in Nb-added low alloy steels undergoing carburizing heat treatment.