• Title/Summary/Keyword: Ferrite cores

Search Result 42, Processing Time 0.027 seconds

The Effect of Ferrite Cores on the Inductively Coupled Plasma Driven at 13.56 MHz (13.56 MHz 유도 결합 플라즈마에서의 강자성체 페라이트 코어의 효과)

  • Lee, Won-Ki;Lee, Kyeong-Hyo;Chung, Chin-Wook
    • Journal of the Semiconductor & Display Technology
    • /
    • v.4 no.3 s.12
    • /
    • pp.35-38
    • /
    • 2005
  • Due to high permeability of the ferrite cores, the characteristics of the inductively coupled plasma(ICP) are expected to be greatly improved. We investigated the effect of the ferrite cores on conventional inductively coupled plasma. It was observed that the current and voltage in the ICP antenna are slightly decreased and the power transfer efficiency is increased. However, due to eddy current and hysteresis loss, plasma density in the ICP with the ferrite cores is not increased. It seems that the ICP with the ferrite cores at low frequency ($\∼$100 kHz) will be greatly improved since the losses at the low frequency can be negligible.

  • PDF

NiZn Ferrite Coating for Electrical Insulation of MnZn Ferrite Cores

  • Kitamoto, Y.;Yajima, H.;Nakayama, Y.;Abe, M.
    • Journal of the Korean Ceramic Society
    • /
    • v.38 no.6
    • /
    • pp.506-508
    • /
    • 2001
  • The ferrite plating with applying power ultrasound waves of 19.5 kHz and 600W enabled us to encapsulate entirely MnZn ferrite cores for transformers with Ni$\sub$x/Zn$\sub$y/Fe$\sub$3-x-y/O$_4$coating. Supplying a NH$_4$OH solution during the plating broke the limit of the solubility of Ni ions to ferrite-plated films. The electrical resistivity of the NiZn ferrite coating increased with increasing the Ni and Zn content, reaching 2.3${\times}$10$\^$5/Ωcm at the composition of Ni$\sub$0.24/Zn$\sub$0.30/Fe$\sub$2.46/O$_4$. The saturation magnetization was 540 emu/㎤. As a result, the MnZn ferrite cores were successfully encapsulated with the NiZn ferrite coatings for an insulation layer.

  • PDF

The effect of ferrite cores on the inductively coupled plasma driven at 13.56MHz (13.56MHz 유도 결합 플라즈마에서의 강자성체 페라이트 코어의 효과)

  • Lee, Won-Ki;Lee, Kyeong-Hyo;Chung, Chin-Wook
    • Proceedings of the Korean Society Of Semiconductor Equipment Technology
    • /
    • 2005.09a
    • /
    • pp.197-202
    • /
    • 2005
  • Due to high permeability of the ferrite core, the characteristics of the ICP are expected to be greatly improved. We investigated the effect of the ferrite cores on conventional inductively coupled plasma. It was observed that the current and voltage in ike ICP antenna are slightly decreased and the power transfer efficiency is increased. However, due to eddy current and hysterisis loss, plasma density in the ICP with the ferrite cores is not increased. It seems that the ICP with the ferrite cores at low frequency (${\~}$100kHz) will be greatly improved since the losses at the low frequency can be negligible.

  • PDF

MAGNETIC PROPERTIES OF FERRITE CORES UNDER DC-BIASED FIELD

  • Fukunaga, H.;Masumoto, S.;Ohta, Y.;Kakehashi, H.;Ogasawara, H.
    • Journal of the Korean Magnetics Society
    • /
    • v.5 no.5
    • /
    • pp.606-609
    • /
    • 1995
  • Ferrite cores are often magnetized under DC-biased field because they have been intensively used in electronic circuits such as an inverter circuit and a switching regulator circuit. Thus we investigated the effects of DC-biased field on magnetic properties in the frequency range of DC-100kHz for two kinds of ferrite cores, TDK PC38 and TDK $H_{3}S$, which have different shapes of B-H loop from each other. The magnetic loss per cycle, W/f, in the $H_{3}S$ core decreased with increasing the strength of DC-biased field, although W/f in the PC38 core increased monotonically with DC-biased field. The observed decreasing tendency differs from the previous result for Si-Fe and ferrite cores, and can be attributed to decrease in eddy current loss as well as that in hysteresis loss.

  • PDF

Communication Performance of Inductive Coupler Using Nanocrystalline Alloy (나노결정립 합금을 이용한 유도형 결합기의 통신 성능)

  • Yang, Seung-Ho;Jeong, Jae-Hwan;Sohn, Kyung-Rak
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2018.05a
    • /
    • pp.154-154
    • /
    • 2018
  • Conventional inductive powerline communications typically use ferrite cores. However, since the recent nanocrystalline cores are expected to perform better, this paper aims to measure the performance of inductive couplers using nanocrystalline cores. To do this, we used inductive powerline communications to observe the communication range when increasing the number of cores from one to five. This experiment shows that we have the best communication performance when we connect 5 cores.

  • PDF

Study on operating characteristics of Ferrite cores for Flat TR in high frequency (Flat TR용 페라이트 코아의 고주파 동작 특성)

  • Han, Se-Won;Cho, Han-Goo;Ryu, Dong-Uk;Choi, Kwang-Bo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07b
    • /
    • pp.1168-1171
    • /
    • 2003
  • In contrast to a conventional transformer, the flat transformer is made using a number of small ferrite cores. Two cores for transformer and one core for inductor, which composed one module. Many modules can be connected together to form a flat matrix transformer. This structural arrangement eliminates the single hot spot problem in conventional transformers and permits high current density pertains at high frequency. In this study, the ferrite magnetic cores of Mn-Zn system for the Flat transformer were manufactured and the electrical and magnetic characteristics of its tested. The power loss of sample FO2(Mn-Zn ferrite) sintered at $1350^{\circ}C$ was $350kW/m^3$ in test conditions of 250kHz, 200mT and $100^{\circ}C$, which showed the good power loss property in high frequency. The power loss of FO2 samples has been studied as a function of magnetic flux density and frequency. Steinmetz exponent was 2.82 at 250kHz and 2.73 at 500kHz. These results illustrated the switching of power loss mechanism in ferrite core from hysteresis losses to eddy current losses or others.

  • PDF

Performance Evaluations of a Novel Prototype of High Frequency Non-Contact Power Transformer

  • Gamage, Laknath;Ishitobi, Manabu;Nakaoka, Mutsuo
    • Journal of Power Electronics
    • /
    • v.4 no.1
    • /
    • pp.12-17
    • /
    • 2004
  • In this paper, a practical implementation to reduce leakage flux of a high-frequency inverter based non-contact type power transformer composed of EE-shape ferrite cores is presented for key technology of the next generation medical use X-ray CT scanner system. Design consideration for the unique structure of the non-contact power transformer with 900mm in diameter is also introduced. The complete non-contact transformer is actually arranged by several blocks of the magnetic circuit assembled by using 10 small EE shape cores with 120mm in length. It is experimentally and analytically discussed from a reduced leakage flux viewpoint related to its inductively coupling coefficient. A practical method to lower the leakage flux is described based on effective Copper-Sheet- Treatment placed on EE shape ferrite cores of magnetic circuit.

Preparation and Properties of Ni-Zn Ferrite by Coprecipitation Method (공침법에 의한 Ni-Zn Ferrite의 제조 및 물성연구)

  • Jung Goo Eun;Koh Jae Gui
    • Korean Journal of Materials Research
    • /
    • v.14 no.5
    • /
    • pp.338-342
    • /
    • 2004
  • Ni-Zn ferrite powder was obtained by wet method that was to be coprecipitated the metal nitrates, Fe($NO_3$)$_3$$9H_2$O, Ni($NO_3$)$_2$$6H_2$O, Zn($NO_3$)$_2$$6H_2$O to make a high permeability material. The composition of the ferrite powder was $Fe_2$$O_3$ 52 mol%, NiO 14.4 mol%, ZnO 33.6 mol%. Ni-Zn ferrite powder was compounded by precipitating metal nitrates with NaOH in vessel at the synthetic temperature of $90^{\circ}C$ for 8 hours. Calcination temperature and sintering temperature were $700^{\circ}C$ and $1150^{\circ}C$$1250^{\circ}C$, respectively, for 2 hours. And the other ferrite powder was also prepared by the wet ball milling that was to be mixed the metal oxides as same as the above chemical composition. We studied the properties of the powder and the electromagnetic characteristics of the sintered cores obtained from there two different processes. Wet direct process produced smaller particle size with narrower distribution of the size and more purified ferrite whose sintered cores had high permeability and high magnetization.

Recycling of Spent Dry Batteries for Deflection Yoke Core Applications

  • Murase, Taku;Takahashi, Hiroyasu;Nomura, Takeshi
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.245-248
    • /
    • 2001
  • Nomura Kohsan Corp. is producing oxides, such as ZnMn$_2$O$_4$, ZnFe$_2$O$_4$, and ZnO, by burning the used dry manganese cells and by sorting out the remnant materials. It is possible to use the recycled materials of the spent dry batteries as the raw materials of deflection yoke cores. Making hish roasting temperature in the recycling system has an effect in reduction of the impurities. As a result, the loss of the cores using the recycled materials is lower. When using the recycled materials, it is required to add Mg (OH)$_2$. ZnO, and Fe$_2$O$_3$in order to rectify the composition of the MnMgZn ferrite for deflection yoke core applications. Furthermore, in order to disappear ZnMn$_2$O$_4$in the formation, it is necessary to control at higher calcining temperatures. The MnMgZn ferrite of using the recycled materials becomes Toss equivalent to the conventional material. TDK Corp. is manufacturing the deflection yoke cores from 1996 using the material recycled from the spent dry batteries.

  • PDF

Design, Implementation and Testing of HF transformers for Satellite EPS Applications

  • Zahran, Mohamed
    • Journal of Power Electronics
    • /
    • v.8 no.3
    • /
    • pp.217-227
    • /
    • 2008
  • The electric power subsystems (EPS) of most remote sensing satellites consist of a solar array as a source of energy, a storage battery, a power management and control (PMC) unit and a charge equalization unit (CEU) for the storage battery. The PMC and CEU use high frequency transformers in their power modules. This paper presents a design, implementation and testing results of a high frequency transformer for the EPS of satellite applications. Two approaches are used in the design process of the transformer based on the pre-determined transformer specifications. The transformer is designed based on an ETD 29 ferrite core. The implemented transformer consists of one center-tapped primary coil with eleven center-tapped secondary coils. The offline calculation results and measured values of R, L for transformer coils are convergence. A test circuit for measuring the transformer parameters like voltage, current and B-H hysteresis was implemented and applied. The test results confirm that the voltage waveforms of both primary and secondary coils were as desired. No overlapping occurred between the control signal and the transformer, which was not saturated during testing even during a short circuit test of the secondary channels. The dynamic B-H loop characteristics of the used transformer cores were measured. The sample test results are given in this paper.