• Title/Summary/Keyword: Ferric-nitrilotriacetate

Search Result 5, Processing Time 0.021 seconds

Ginseng Extract Protects Unsaturated Fatty acid from Decomposition Caused by Iron-Mediated Lipid Peroxidation

  • Okada, Shi-Geru;Zhang, Da-Xian
    • Proceedings of the Ginseng society Conference
    • /
    • 1998.06a
    • /
    • pp.57-62
    • /
    • 1998
  • We hypothesized the primary effect of ginseng was to protect cell membrane fatty acids from decomposition caused by free radicals. To confirm the antioxidant effect of ginseng, we measured the inhibitory effect on the formation of thiobarbituric acid-reactive substances, an indicator of lipid peroxidation, and evaluated the free radical scavenging effect of ginseng by electron spin resonance spectrometer, and gas chromatography. The results showed that thiobarbituric acid-reactive substances formed and the loss of arachidonic acid during lipid peroxidation, and that hydroxyl (-like) radical peak formed by the iron complex (ferric nitrilotriacetate, an known free radical generator in vitro) were completely inhibited by ginseng extract. This antioxidant effect of ginseng may be responsible for its wide pharmacological actions in clinical practice. As the free radical reactions in general are rapid and non-specific, ginseng seems to act as a normalizer, rather than a general tonic, at the stages of acute or chronic active phase of the various diseases.

  • PDF

Protective Effect of Plantago asiatica L. Leaf Ethanolic Extract Against Ferric Nitrilotriacetate-Induced Prostate Oxidative Damage in Rats (랫드에서의 Fe-NTA 유발 산화스트레스에 대한 차전초 에탄올 추출물의 전립선보호 효과)

  • Hong, Seung-Taek;Hong, Chung-Oui;Nam, Mi-Hyun;Ma, Yuan-Yuan;Hong, Yun-Jin;Son, Da-Hee;Chun, Su-Hyun;Lee, Kwang-Won
    • Journal of Food Hygiene and Safety
    • /
    • v.26 no.3
    • /
    • pp.260-265
    • /
    • 2011
  • Plantago asiatica L. (P. asiatica) has been used as one of the popular folk medicines in Asia for human health care practices. Various activities of P. asiatica have been reported, such as anti-oxidant, anti-glycation, anti-inflammatory and hepatoprotective activity. Therefore, the potential of P. asiatica to reduce oxidative stress has been studied in several ways for over 20 years, especially at liver and kidney. However no investigation has been reported revealing its protective effect on prostate. Method: Treatment of P. asiatica leaf ethanolic extract (PLE) (1 g/kg body weight (b.w.), 2 g/kg b.w., or 4 g/kg b.w.) were given separately to animals for pretreatment once per day for 7 days, and on the seventh day ferric nitrilotriacetate (Fe-NTA; 0.24 mmol Fe/kg b.w.), which is known as an oxidative stress-inducer at prostate, was administrated by i.p to negative control group. At the end of the study period, dissection was carried out for detecting the prostate protective effect of PLE. Result: Fe-NTA-treated animals produced reactive oxygen species (ROS) resulting in depletion of antioxidant biomaker, such as glutathione (GSH), glutathione reductase (GR), and glutathione s-transferase (GST) and increase of lipid peroxidation in prostate. However, PLE pretreatment resulted in an increase in the GSH, GST and GR levels concentration dependent manner and in an significant decrease in the levels of lipid peroxidation. Conclusion: Our data suggest that PLE may be effective in protecting oxidative stress-induced damage of prostate, and PLE may be an chemopreventive agent against Fe-NTA-mediated prostate oxidative damage.

Protective Effect of Plantago asiatica L. Extract Against Ferric Nitrilotriacetate (Fe-NTA) Induced Renal Oxidative Stress in Wistar Rats (차전초 추출물을 투여한 랫드에서의 Fe-NTA 유발 산화스트레스에 대한 신장보호 효과)

  • Hong, Chung-Oui;Hong, Seung-Teak;Koo, Yun-Chang;Yang, Sung-Yong;Lee, Ji-Young;Lee, Yanhouy;Ha, Young-Min;Lee, Kwang-Won
    • Journal of Food Hygiene and Safety
    • /
    • v.26 no.2
    • /
    • pp.107-113
    • /
    • 2011
  • Plantago asiatica L. (PA), which is widely distributed in Korea, Japan and China, has traditionally been used as a popular folk medicine for the treatment of liver diseases. A variety of activities of PA was reported, that is hepatoprotective, anti-inflammatory, anti-glycation and anti-oxidant effect. Ferric nitrilotriacetate (Fe-NTA) is a potent nephrotoxic agent and has been reported to induce renal proximal tubular necrosis. In the present study, pre-treatment with PA extract (PAE) in Wistar rat followed by Fe-NTA i.p. treatment (13.5 mg Fe/kg body weight) was performed to detect the renal protective effect of PAE. Only Fe-NTA treated group showed increases in the level of serum blood urea nitrogen (BUN) and serum creatinine (Cr), and renal tissue malondialdehyde (MDA), product of lipid peroxidation. Moreover, the level of biomarkers indicate the antioxidants status, reduced glutathione (GSH), glutathione-S-transferase (GST) and glutathione reductase (GR) were decreased. However, PAE pre-treated group showed decreases in the levels of serum BUN, serum Cr and renal tissue MDA in concentration dependent manner and increases in the level of GSH, GST and GR. These results are significantly different (p < 0.05) to the other groups. Our data suggest that PAE may be used as an chemopreventive material against Fe-NTA-mediated renal oxidative stress.

Effect of Continuous Exposure to Reactive Oxygen Species on ${\gamma}$-Glutamyltranspeptidase Expression and Activity in HepG2 Cells (HepG2 세포에서 지속적인 활성 산소 노출이 ${\gamma}$-Glutamyltranspeptidase 발현과 활성에 미치는 영향)

  • Kim, Young-Whan;Choe, Dal-Ung
    • Journal of Environmental Health Sciences
    • /
    • v.30 no.3
    • /
    • pp.230-238
    • /
    • 2004
  • The adverse health effects of a number of environment pollutions are related to the formation of free radicals. Induction of antioxidant defensive system in the response to an oxidative attack is an essential element of the cell to survive. CYP2E1 is easily induced by organic solvents and induces continuous formation of reactive oxygen species (ROS). ${\gamma}$-Glutamyltranspeptidase (${\gamma}$GT) plays an important role in glutathione metabolism and xenobiotic detoxification. To evaluate the characteristic of oxidative stress which induces GGT expression and to understand human antioxidant defensive response against oxidative stress induced by CYP2E1, we studied regulation of ${\gamma}$GT enzyme expression in response to various oxidative stresses in human HepG2 cells. The ${\gamma}$GT activity was not modified after exposure of acute oxidative stress inducing agents (ferric nitrilotriacetate, cumene hydroperoxide, ADP-Fe, O-tetradecanoylphorbol-13-acetate, tumor necrosis factor-alpha). To induce continuous exposure of cells to ROS, HepG2 cells were transfected by human CYP2E1 gene transiently. The CYP2E1 activity was verified with chlorzoxazone hydroxylation. Transfection of CYP2E1 showed continuous 60% increase in intracellular ROS and 240 % increase in microsomal ROS. CYP2E1 overexpressing cells showed increased ${\gamma}$GT activity (2.5-fold). The observed enhancement of ${\gamma}$GT activity correlated with a significant increase of ${\gamma}$GT mRNA (2.1-fold). Treatment with antioxidant strongly prevented the increase in ${\gamma}$GT activity. The CYP2E1 overexpression did not modify toxicity index and increased glutathione levels. These results show that continuous exposure of cells to ROS produced by CYP2E1 up-regulates ${\gamma}$GT; This may be one of the adaptive antioxidant responses of cells to oxidative insult. Present study also suggests that the induction of ${\gamma}$GT could be used as a marker of oxidative stress induced by exposure to organic solvents.

Functional Characterization of Drosophila melanogaster CYP6A8 Fatty Acid Hydroxylase

  • Sang-A Lee;Vitchan Kim;Byoungyun Choi;Hyein Lee;Young-Jin Chun;Kyoung Sang Cho;Donghak Kim
    • Biomolecules & Therapeutics
    • /
    • v.31 no.1
    • /
    • pp.82-88
    • /
    • 2023
  • Genomic analysis indicated that the genome of Drosophila melanogaster contains more than 80 cytochrome P450 genes. To date, the enzymatic activity of these P450s has not been extensively studied. Here, the biochemical properties of CYP6A8 were characterized. CYP6A8 was cloned into the pCW vector, and its recombinant enzyme was expressed in Escherichia coli and purified using Ni2+-nitrilotriacetate affinity chromatography. Its expression level was approximately 130 nmol per liter of culture. Purified CYP6A8 exhibited a low-spin state in the absolute spectra of the ferric forms. Binding titration analysis indicated that lauric acid and capric acid produced type I spectral changes, with Kd values 28 ± 4 and 144 ± 20 µM, respectively. Ultra-performance liquid chromatography-mass spectrometry analysis showed that the oxidation reaction of lauric acid produced (ω-1)-hydroxylated lauric acid as a major product and ω-hydroxy-lauric acid as a minor product. Steady-state kinetic analysis of lauric acid hydroxylation yielded a kcat value of 0.038 ± 0.002 min-1 and a Km value of 10 ± 2 µM. In addition, capric acid hydroxylation of CYP6A8 yielded kinetic parameters with a kcat value of 0.135 ± 0.007 min-1 and a Km value of 21 ± 4 µM. Because of the importance of various lipids as carbon sources, the metabolic analysis of fatty acids using CYP6A8 in this study can provide an understanding of the biochemical roles of P450 enzymes in many insects, including Drosophila melanogaster.