• Title/Summary/Keyword: Fermenting

Search Result 383, Processing Time 0.023 seconds

Interactions between Entodinium caudatum and an amino acid-fermenting bacterial consortium: fermentation characteristics and protozoal population in vitro

  • Tansol Park;Zhongtang Yu
    • Journal of Animal Science and Technology
    • /
    • v.65 no.2
    • /
    • pp.387-400
    • /
    • 2023
  • Ruminal protozoa, especially entodiniomorphs, engulf other members of the rumen microbiome in large numbers; and they release oligopeptides and amino acids, which can be fermented to ammonia and volatile fatty acids (VFAs) by amino acid-fermenting bacteria (AAFB). Studies using defaunated (protozoa-free) sheep have demonstrated that ruminal protozoa considerably increase intraruminal nitrogen recycling but decrease nitrogen utilization efficiency in ruminants. However, direct interactions between ruminal protozoa and AAFB have not been demonstrated because of their inability to establish axenic cultures of any ruminal protozoan. Thus, this study was performed to evaluate the interaction between Entodinium caudatum, which is the most predominant rumen ciliate species, and an AAFB consortium in terms of feed degradation and ammonia production along with the microbial population shift of select bacterial species (Prevotella ruminicola, Clostridium aminophilum, and Peptostreptococcus anaerobius). From an Ent. caudatum culture that had been maintained by daily feeding and transfers every 3 or 4 days, the bacteria and methanogens loosely associated with Ent. caudatum cells were removed by filtration and washing. An AAFB consortium was established by repeated transfers and enrichment with casamino acids as the sole substrate. The cultures of Ent. caudatum alone (Ec) and AAFB alone (AAFB) and the co-culture of Ent. caudatum and AAFB (Ec + AAFB) were set up in three replicates and incubated at 39℃ for 72 h. The digestibility of dry matter (DM) and fiber (NDF), VFA profiles, ammonia concentrations, pH, and microscopic counts of Ent. caudatum were compared among the three cultures. The co-culture of AAFB and Ent. caudatum enhanced DM degradation, VFA production, and Ent. caudatum cell counts; conversely, it decreased acetate: propionate ratio although the total bacterial abundance was similar between Ec and the Ec + AAFB co-culture after 24 h incubation. The ammonia production and relative abundance of C. aminophilum and P. anaerobius did not differ between AAFB alone and the Ec + AAFB co-culture. Our results indicate that Ent. caudatum and AAFB could have a mutualistic interaction that benefited each other, but their interactions were complex and might not increase ammoniagenesis. Further research should examine how such interactions affect the population dynamics of AAFB.

Changes of Biological and Chemical Properties during Composting of Livestock Manure with Isolated Native Microbe (토착미생물별 가축분 퇴비화 과정중 생물화학적 특성 변화)

  • Han, Hyo-Shim;Lee, Kyung-Dong
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.6
    • /
    • pp.1126-1135
    • /
    • 2012
  • In order to produce high-quality fermenting composts, bacteria strains with high activities of extracellular enzymes (cellulase, chitinase, amylase, protease and lipase) were isolated from the soils in 6 provinces of Korea, and characterized by 16S rRNA gene sequence analysis and properties. The selected 7 stains inoculated to livestock manure for 2' fermenting time, and experimental treatment divided into 3 groups, B1, B2 and B3, according to microbial activity and enzyme type. Our results showed that microbe applications (B1, B2 and B3) can increase (p<0.05) both rhizomes (17-38%) and enzyme activities (50-81%) in compost after fermenting time, respectively, compared to non-microbe treatment (control). The microbe application also decreased significantly (p<0.05) the $NH_3$ and $H_2S$ gas contents 13.4 and 27.3% compared with control, and the Propionic acid and Butyric acid gas contents 14.5 and 19.6%, respectively, as compared to the control. The microbial degradation rate (%) of pesticides and heavy metals increased significantly (p<0.05) after fermenting time, respectively, as compared to the control. Especially, microbe applications were more effective in total rhizomes yields and bioactivities than non-microbe treatment. Thus the results of this study could help in development of potential bioinoculants and composting techniques that maybe suitable for crop production, and protectable for earth environment under various conditions.

Bio-ethanol Production from Alkali Prehydrolyzed Yellow Poplar (Liriodendron tulipifera L.) Using Enzymatic Saccharification and Fermentation (알칼리 전처리 백합나무(Liriodendron tulipifera L.)의 효소당화 및 발효에 의한 바이오 에탄올 생산)

  • Shin, Soo-Jeong;Cho, Dae Haeng;Han, Sim-Hee;Kim, Young Hwan;Cho, Nam-Seok
    • Journal of Korean Society of Forest Science
    • /
    • v.98 no.3
    • /
    • pp.305-310
    • /
    • 2009
  • Yellow poplar was selected a promising biomass resources for bio-ethanol production through alkali prehydrolysis, enzymatic saccharification and fermentation using commercial cellulase mixtures (Celluclast 1.5L and Novozym 342 mixtures) and fermenting yeast. In alkali prehydrolysis, 51.1% of Yellow poplar biomass remained as residues, which chemical compositions were 82.2% of cellulose, 17.6% of xylan and 2.0% of lignin. In alkali prehydrolysis process, 96.9% of cellulose, 38.0% of xylan and 5.7% of lignin were remained. Enzymatic saccharification by commercial cellulases led to 87.0% of cellulose to glucose and 87.2% of xylan to xylose conversion. Produced glucose and xylose were fermented with fermenting yeast (Saccharomycess cerevisiae), which resulted in selective fermentation of glucose only to bio-ethanol. Residual monosaccharides after fermentation were consisted to 0.4-1.4% of glucose and 92.1-99.5% of xylose. Ethanol concentration was highest for 24 h fermentation as 57.2 g/L, but gradually decreased to 56.2 g/L for 48 h fermentation and 54.3 g/L for 72 h fermentation, due to the ethanol consumption by fermenting yeast.

Studies on the Optimum Fermenting Conditions of Dongchimi for Production of Ion Beverage (이온음료 제조를 위한 동치미의 최적 담금 조건에 관한 연구)

  • Ko, Eun-Jung;Hur, Sang-Sun;Park, Man;Choi, Yong-Hee
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.24 no.1
    • /
    • pp.141-146
    • /
    • 1995
  • The study was conducted for optimum fermenting conditions of Dongchimi(pony tailed chinese radish kimchi) in production of ion beverage. The changes of pH and total acidity were increased as the temperature increased. Non-volatile organic acids, such as lactic acid, citric acid, malic acid and succinic acid were produced in Dongchimi fermentation. The amount of lactic acid was increased higher, followed by citric acid and malic acid. However succininc acid was produced a little of amount at $0^{\circ}C$. Lactic acid producing bacteria number increased in initial period and then decreased in last period of fermentation. During lactic acid producing bacteria was increased, the amouont of lactic acid was increased. The flavor components were tentatively identified as methyl pentane, ethyl thioethene 2, 3-diazaindolizine, dimethyl disulfide. The optimum fermenting conditions of Dongchimi for production of ion beverage were 24~29 days at $0^{\circ}C$, 9~12dyas at $5^{\circ}C$ and 16~22days at $10^{\circ}C$, respectively.

  • PDF

Taste Components of Soy Sauce Manufactured by Bacillus Species SSA3-2M1 and Fused ST723-F31

  • Kim, Haeng Ja;Eun Ju Lee;Ok Sun Shin;Myeong Rak Choi;Jong Kyu Kim
    • Journal of Microbiology and Biotechnology
    • /
    • v.6 no.3
    • /
    • pp.202-208
    • /
    • 1996
  • In order to investigate fermenting conditions and the microorganisms necessary for factory production of traditional Korean soy sauce, we manufactured soy sauce made by Bacillus species SSA3-2M1 and fused ST723-F31 with aeration (1/30 vvm, 113 vvm and 2/3 vvm) at $30^{\circ}C$ for 40 days. This method was chosen to investigate the changes of dissolved oxygen, pH, cell number, flavor and the taste components during fermentation. When air was supplied (2/3 vvm) to the fermentor during fermentation, the flavor of the soy sauce and the composition of taste components (free amino acids, free sugars and organic acids) were similar to that of traditional Korean soy sauce after 22 days. The results of our experiments indicates that the mass production of traditional Korean soy sauce is possible using Bacillus species SSA3-2M1 and fused ST723-F31 given sufficient aeration.

  • PDF

A study on strain improvement by protoplast fusion between amylase secreting yeast and alcohol fermenting yeast - IV. Alcohol and pullulanase productivities of fusant between S. diastaticus and C. tropicalis - (Amylase분비효모와 alcohol 발효효모의 세포융합에 의한 균주의 개발 - 제4보. S. diastaticus와 C. tropicalis 간의 융합체의 pullulanase생성 및 alcohol발효 -)

  • 서정훈;김영호;홍순덕;권택규
    • Microbiology and Biotechnology Letters
    • /
    • v.14 no.5
    • /
    • pp.365-369
    • /
    • 1986
  • The activity of glucoamylase and pullulanase, properties of glucoamylase and ethanol productivities of fusants were studied. Glucoamylase and pullulanase activity of fusants were higher than parents. The optimal pH and temperature of glucoamylase of fusants were very similar to the those produced by S. diastaticus. In alcohol fermentation. fermenting ability and fermentation rate of fusants were higher and faster than either of its parental strain. The maximum of alcohol yield in 15% of liquefied potato starch was 7.8% (v/v)

  • PDF

Development of Pressure Monitoring System and Pressure Changes during Kimchi Fermentation (김치발효 중 가스압력 변화와 압력측정시스템의 개발)

  • Lee, Young-Jin;Chun, Jae-Kun
    • Korean Journal of Food Science and Technology
    • /
    • v.22 no.6
    • /
    • pp.686-689
    • /
    • 1990
  • For the monitoring of kimchi fermentation states, pressure detecting sensor and monitoring device were designed and fabricated. The system was consisted of an air tight fermenting tube(31.5 ml), strain gauge type pressure sensor and signal processing device built with operational amplifier and A/D converter, and interfaced to personal computer. Chiness cabbage kimchi was fermented in the plastic container($150{\times}220{\times}160mm$) at $25^{\circ}C\;and\;30^{\circ}C$. The fermentation was monitored with fermenting tubes containing kimchi. The pressure based kimchi fermentation curve was constructed and showed a typical kimchi curing curve having 2 stepwise pressure increasing pattern.

  • PDF

Isolation and Identification of Xylose fermenting Yeast (Xylose 발효효모의 분리 및 성질)

  • 김남순;서정훈
    • Microbiology and Biotechnology Letters
    • /
    • v.16 no.6
    • /
    • pp.505-509
    • /
    • 1988
  • Ethanol productivity of a xylose fermenting yeast (Candida sp. X-6-4l) isolated from soil was investigated in laboratory scale using Erlenmeyer flask and mini-jar tormentor. The optimal conditions of xylose fermentation in flask experiment were pH 4, asparagine as nitrogen source, xylose 20g/$\ell$, and in these condition, ethanol yield was about 80% to theoretical yield. Using mini-jar fermentor containing 5% total sugar with 2.5% xylose and 2.5% glucose, we obtained 2.3%(v/ v) ethanol and the corresponding efficiency was 72.3% of total sugar. In this case, the consumming speed of sugar under aerobic condition was faster than that of anaerobic condition, and glucose was used previously to xylose. The optimum concentration of xylose for ethanol fermentation in mini-jar fer-mentor scale was 5%, and the efficiency was 69% of total sugar(Alc.2.2% v/v).

  • PDF

Isolation and Genetic Characterization of Protease-Producing Halophilic Bacteria from Fermenting Anchovy (발효중인 멸치액젓에서 분리한 단백질분해효소 생산 호염성 세균의 유전적 특성)

  • Lee, Jin-Ho
    • Journal of Life Science
    • /
    • v.22 no.2
    • /
    • pp.167-176
    • /
    • 2012
  • Three protease-producing halophilic bacteria were isolated from fermenting anchovy. Isolated FAM 10, FAM 114, and FAM 115 were found to grow optimally at salt concentrations of 2-4%, 10%, and 6%, respectively, and could grow in salinity of up to 18-22%. The salinity conditions for optimum protease production were 6% in FAM 10 and 10% in FAM 114 and FAM 115. The protease activity of FAM 10 was gradually inhibited by the addition of NaCl up to 10%, and was not evident at 14%, whereas FAM 114 and FAM 115 displayed protease activity at 14% NaCl and could not be measured at 18%. These results demonstrated that the three isolated strains belong to protease-producing, moderately halophilic bacteria. Strain FAM 10, FAM 114, and FAM 115 were identified as Salinivibrio sp., Halobacillus sp., and Halobacillus sp. respectively, based on comparative analyses of the 16S rRNA gene and the 16S-23S intergenic space sequence (IGS), biochemical testing, and Gram staining. Salinivibrio sp. FAM 10 had two 16S rDNAs containing different sequences at position 191 and four IGSs that harbored no tRNA gene and tRNA genes for isoleucine, alanine, glutamate, lysine, and/or valine. Halobacillus sp. FAM 114 and FAM 115 had completely identical 16S rRNA gene sequences and showed 99% identity to the sequences of various Halobacillus strains. The three IGSs found in the genome of both strains displayed 99% sequence identity with Halobacillus aidingensis and Halobacillus sp. JM-Hb, and had $IGS^0$ with no tRNA gene and $IGS^{IA}$ with tRNA genes for isoleucine and alanine.