• Title/Summary/Keyword: Fermented Ginseng

Search Result 249, Processing Time 0.024 seconds

Bifidus Fermentation Increases Hypolipidemic and Hypoglycemic Effects of Red Ginseng

  • Trinh, Hien-Trung;Han, Sang-Jun;Kim, Sang-Wook;Lee, Young-Chul;Kim, Dong-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.7
    • /
    • pp.1127-1133
    • /
    • 2007
  • Antihyperlipidemic and antihyperglycemic effects of Red Ginseng (RG, steamed and dried root of Panax ginseng C.A.Meyer, family Araliaceae), major component of which is ginsenoside Rg3, and Bifidodoterium-fermented RG (FRG), major component of which is ginsenoside Rh2, were investigated. Orally administered RG and FRG potently reduced the serum triglyceride levels in com-oil-induced hypertriglycemidemic mice as well as total cholesterol and triglyceride levels in Triton WR-1339-induced hyperlipidemic mice. Of the saponin and polysaccharide fractions of RG and FRG, the polysaccharide fraction inhibited postprandial blood glucose elevation of maltose- or starch-loaded mice and reduced the blood triglyceride levels in com-oil-induced hypertriglycemidemic mice. The saponin fraction and its ginsenosides Rg3 and Rh2 reduced blood triglyceride and total cholesterol levels in Triton WR1339-induced hyperlipidemic mice. The inhibitory effect of FRG and its main constituents against hyperlipidemia and hyperglycemia in mice were more potent than those of RG. These findings suggest that hypolipidemic and hypoglycemic effects of RG can be enforced by Bifidus fermentation and FRG may improve hyperlipidemia and hyperglycemia.

Effects of gut microbiota on the pharmacokinetics of protopanaxadiol ginsenosides Rd, Rg3, F2, and compound K in healthy volunteers treated orally with red ginseng

  • Kim, Jeon-Kyung;Choi, Min Sun;Jeung, Woonhee;Ra, Jehyeon;Yoo, Hye Hyun;Kim, Dong-Hyun
    • Journal of Ginseng Research
    • /
    • v.44 no.4
    • /
    • pp.611-618
    • /
    • 2020
  • Background: It is well recognized that gut microbiota is involved in the biotransformation of ginsenosides by converting the polar ginsenosides to nonpolar bioactive ginsenosides. However, the roles of the gut microbiota on the pharmacokinetics of ginsenosides in humans have not yet been fully elucidated. Methods: Red ginseng (RG) or fermented red ginseng was orally administered to 34 healthy Korean volunteers, and the serum concentrations of the ginsenosides were determined using liquid chromatography-tandem mass spectrometry. In addition, the fecal ginsenoside Rd- and compound K (CK)eforming activities were measured. Then, the correlations between the pharmacokinetic profiles of the ginsenosides and the fecal ginsenoside-metabolizing activities were investigated. Results: For the RG group, the area under the serum concentratione-time curve values of ginsenosides Rd, F2, Rg3, and CK were 8.20 ± 11.95 ng·h/mL, 4.54 ± 3.70 ng·h/mL, 36.40 ± 19.68 ng·h/mL, and 40.30 ± 29.83 ng·h/mL, respectively. For the fermented red ginseng group, the the area under curve from zero to infinity (AUC) values of ginsenosides Rd, F2, Rg3, and CK were 187.90 ± 95.87 ng·h/mL, 30.24 ± 41.87 ng·h/mL, 28.68 ± 14.27 ng·h/mL, and 137.01 ± 96.16 ng·h/mL, respectively. The fecal CK-forming activities of the healthy volunteers were generally proportional to their ginsenoside Rd-eforming activities. The area under the serum concentration-time curve value of CK exhibited an obvious positive correlation (r = 0.566, p < 0.01) with the fecal CK-forming activity. Conclusion: The gut microbiota may play an important role in the bioavailability of the nonpolar RG ginsenosides by affecting the biotransformation of the ginsenosides.

Physicochemical Properties and Antioxidative Activity of Fermented Rhodiola sachalinensis and Korean Red Ginseng Mixture by Lactobacillus acidophilus (Lactobacillus acidophilus을 이용한 홍경천과 홍삼 혼합 발효물의 이화학적 특성 및 항산화 활성)

  • Sung, Su-Kyung;Rhee, Young-Kyung;Cho, Chang-Won;Kim, Young-Chan;Lee, OK-Hwan;Hong, Hee-Do
    • The Korean Journal of Food And Nutrition
    • /
    • v.26 no.3
    • /
    • pp.358-365
    • /
    • 2013
  • The study was conducted to investigate the condition for mixed fermentation of Rhodilola sachalinensis with red ginseng using Lactobacillus acidophillus 128 and the changes of physicochemical properties and antioxidant activities before and after the lactic acid fermentation was examined. In the single fermentation of Rhodiola sachalinensis extract, the pH and titratable acidity rarely changed, and the number of lactic acid bacteria decreased greatly. On the other hand, in the lactic acid fermentation of Rhodiola sachalinensis-red ginseng mixed extract of 50% red ginseng content, the pH decreased, whereas the titratable acidity and the number of lactic acid bacteria increased. The solid content of optimal mixed extract for lactic acid fermentation was 0.5%. Sugar content decreased during fermentation, but total phenolic compounds tended to increase during fermentation. The salidroside and p-tyrosol content of the initial Rhodiola sachalinensis-red ginseng mixed extract was 419.5 mg% and 60.1 mg%, respectively; after fermentation, the salidroside content after lactic acid fermentation decreased greatly to 81.8 mg%, and the amount of p-tyrosol increased greatly to 324.9 mg%. The DPPH scavenging activity of Rhodiola sachalinensis-red ginseng mixed fermentate was 78.1% at 0.1% concentration, showing a tendency to increase as compared to 50.3% of Rhodiola sachalinensis-red ginseng mixed extract before the fermentation (p<0.05); it was a higher antioxidant activity as compared to the single fermentation of Rhodiola sachalinensis or red ginseng.

Growth and Ginsenoside Content in Different Parts of Ginseng Sprouts Depending on Harvest Time (수확시기에 따른 새싹삼의 부위별 생육 및 Ginsenoside 함량 변화)

  • Jang, In Bae;Yu, Jin;Suh, Su Jeoung;Jang, In Bok;Kwon, Ki Beam
    • Korean Journal of Medicinal Crop Science
    • /
    • v.26 no.3
    • /
    • pp.205-213
    • /
    • 2018
  • Background: Since the revised Ginseng Industrial Act was passed, ginseng sprouts have become a new medicinal vegetable for which there is high consumer demand. However, the existing amount of research and data on ginseng production has not kept pace with this changed reality. Methods and Results: In this study we analyzed the changes in the amounts of ginsenosides in different parts of growing ginseng sprouts during the period from when organic seedlings were planted in nursery soil until 8 weeks of cultivation had elapsed, which was when the leaves hardened. In the leaves, ginsenoside content increased 1.62 times with the panaxadiol (PD) system and 1.31 - 1.56 times with the panaxatriol (PT) system from 7 to 56 days after transplantation. During the same period, the total ginsenoside content of the stems decreased by 0.66 - 0.91 times, and those of the roots increased until the $21^{st}$ day, and then underwent steep declines. The effect of fermented press cake extract (FPCE) and tap water (TP) on the total amount of ginsenoside per plant were similar, and could be represented with the equations $y=1.4330+0.2262x-0.0008x^2$ and $y=0.9555+0.2997x-0.0031x^2$ in which y = ginsenoside content x = amount of and on the total amounts of FPCE or TP, respectively after 26.4 days, however, the difference between ginsenoside content with FPCE and TP widened. Conclusions: These results suggested that the amounts of ginsenosides in different parts of ginseng varied with the cultivation period and nutrient supply. These findings also provide fundamental data on the distribution of ginsenosides among plant parts for 2-year-old ginseng plants in the early-growth stage.

Protective Effect of Ferments of Hot-water Extract Mixture from Rhodiola sachalinensis and Red Ginseng on Oxidative Stress-induced C2C12 Myoblast (C2C12 근육세포의 산화적 손상에 대한 홍경천-홍삼 추출물 혼합액 발효물의 보호효과)

  • Yoon, Bo-Ra;Kim, Young-Hyun;Lee, Jong-Seok;Hong, Hee-Do;Rhee, Young-Kyoung;Cho, Chang-Won;Kim, Young-Chan;Lee, Ok-Hwan
    • The Korean Journal of Food And Nutrition
    • /
    • v.26 no.3
    • /
    • pp.485-491
    • /
    • 2013
  • Rhodiola spp. and red ginseng have been used for food and medicinal applications in disease chemoprevention in many Asian countries. Increased oxidative stress by reactive oxygen species (ROS) has been proposed to be a major cause of muscle fatigue. The present study was designed to investigate the protective effects of a fermented hot-water extract mixture from Rhodiola sachalinensis and red ginseng (MFR) on cell damage and the antioxidant enzyme system in $H_2O_2$-induced oxidative stress in skeletal muscle cells. C2C12 myoblasts were treated with various concentrations of NFR (non-fermented Rhodiola sachalinensis extract), FR (fermented hot-water extract from Rhodiola sachalinensis) and MFR for up to 5 days after the standard induction of differentiation, followed by semi-quantitative RT-PCR. MFR treatment dose-dependently protected oxidative damage of C2C12 cells. The treatment with MFR also enhanced mRNA expressions of MyoD, Cu/Zn SOD, Mn-SOD and GPX up to 16%. These results indicate that MFR exerts an anti-oxidative effect through a mechanism (s) that may involve the up-regulation of antioxidant enzymes, which may be important for the cellular redox environment in muscle cells.

Antibacterial activity of Bio-fermented Galla Rhios Extract (오배자 발효추출물의 항세균활성)

  • Doh, Eun Soo;Yoo, Ji Hyun
    • The Korea Journal of Herbology
    • /
    • v.29 no.4
    • /
    • pp.21-27
    • /
    • 2014
  • Objectives : This experimental study was performed in order to investigate the antibacterial effect of bio-fermented Galla Rhois extract. Methods : The Galla Rhois extract was fermented by Streptococcus thermophilus, Saccharomyces cerevisiae and Lactobacillus delbrueckii, and their products was tested for antibacterial activity against six pathogenic microorganisms namely, Bacillus cereus, Bacillus subtilis, Staphylococcus aureus, Vibrio parahaemolyticus, Escherichia coli and Salmonella typhimurium by paper disc diffusion method. Results : The Galla Rhois fermented extract by Lactobacillus delbrueckii and Saccharomyces cerevisiae showed more effective antibacterial activity than not fermented extract against Bacillus subtilis and Vibrio parahaemolyticus. Antibacterial activity of fermented extract using especially Lactobacillus delbrueckii and Saccharomyces cerevisiae was proved that it was good with even 2 percents concentration. Antibacterial activity of Galla Rhois extract within pH 3 to pH 7 had been safe regardless of pH but low over pH 9. The growth of Bacillus cereus, Staphylococcus aureus, and Vibrio parahaemolyticus had a tendency to decrease depend on the increasing concentration of the extract. EtOEt, EtOAc and n-BuOH fractions of the Galla Rhois extract had a high level of antibacterial activity against Bacillus cereus, Bacillus subtilis, Staphylococcus aureus and Vibrio parahaemolyticus, respectively. Surprisingly, EtOAc fractions of the Galla Rhois extract showed higher antibacterial activity against Vibrio parahaemolyticus alone. And antibacterial activity against six pathogenic microorganisms had a tendency to increase depend on the increasing concentration of the fractions of the Galla Rhois extract. Conclusions : Bio-fermented Galla Rhois extract, efficiently inhibited the growth of Bacillus cereus and Vibrio parahaemolyticus.

Effects of Korean Ginseng, Korean Red Ginseng and Fermented Korean Red Ginseng on Cerebral Blood Flow, Cerebrovascular Reactivity, Systemic Blood Pressure and Pulse Rate in Humans (인삼, 홍삼 및 발효 홍삼이 정상인의 뇌혈류, 평균혈압, 맥박수에 미치는 영향)

  • Jeong, Dong-Won;Hong, Jin-Woo;Shin, Won-Jun;Park, Young-Min;Jung, Jae-Han;Kim, Chang-Hyun;Min, In-Kyu;Park, Seong-Uk;Jung, Woo-Sang;Park, Jung-Mi;Go, Chang-Nam;Cho, Ki-Ho;Moon, Sang-Kwan
    • The Journal of Korean Medicine
    • /
    • v.27 no.3 s.67
    • /
    • pp.38-50
    • /
    • 2006
  • Objectives: The aim of this study was to evaluate the effects of Korean ginseng (KG), Korean red ginseng (KRG) and fermented Korean red ginseng (FKRG) extracts on cerebral hemodynamics and to compare distinction of each extract. Methods: Ten healthy male volunteers $(26.0{\pm}1.8yrs)$ participated in the study according to double-blind and cross-over protocols. Each volunteer was blindly administered 500mg of KG, KRG, FKRG extract or placebo (Dextrin). Blinded researchers measured changes of hyperventilation-induced cerebrovascular reactivity (CVR), mean blood flow velocity (MBFV) of middle cerebral arteries (MCAs) and corrected blood flow velocity at $P_{ETCO2}=40mmHg$ (CV40) using transcranial Doppler ultrasound (DWL Co., Germany). Researchers also observed changes of mean blood pressure (MBP), pulse rate (PR) and expiratory $CO_2$ using S/5 Collector (Datex-Ohmeda Co., Finland). The evaluation was performed at basal condition, and repeated at 1, 2, 3, 4 and 5 hours after administration. Results: MBFV and CV40 in the KRG group tended to rise at I hour after administration, while those of the FKRG group tended to rise at 2 hours after administration. CVR increased significantly after 1 hour in the KRG group (p=0.009) and after 2 hours in the FKRG group (p=0.035), respectively. The KG group showed increasing tendency at 4 hours after administration. No group showed significant difference from the placebo in changes of MBP and PR. Conclusions: It is suggested that KG, KRG and FKRG extracts have effects of enhancing CVR and thus of increasing cerebral blood flow in human subjects.

  • PDF

Effect of Microwave Treated-Wild Ginseng on the Quality of Korean Traditional Yakju (마이크로 웨이브로 처리한 산양삼 첨가가 전통 약주의 품질에 미치는 영향)

  • Lee, Dae-Hyoung;Kang, Heui-Yun;Lee, Yong-Seon;Cho, Chang-Hui;Kim, Soon-Jae
    • Korean Journal of Food Science and Technology
    • /
    • v.43 no.6
    • /
    • pp.742-746
    • /
    • 2011
  • To increase the quality of Korean traditional yakju, we prepared seed cultures by fermentation at $20^{\circ}C$ for 2 days after addition of 140% water, 3% nuruk and 1.5% yeast into cooked rice. After the 200% cooked rice, 120% water and 0.08% commercial saccharifying enzyme were added to seed cultures and fermented for 2 days at $20^{\circ}C$, wild ginseng was added and then further fermented for 5 days. Physicochemical properties of traditional yakju were investigated. Ethanol was produced (18.5%) by the addition of 1.2% wild ginseng. However, ethanol content was not increased by addition of microwave treated-wild ginseng and rice (either cooked rice or raw). The traditional yakju obtained by fermentation at $20^{\circ}C$ for 5 days, after 90 sec of microwave treated-wild ginseng was added into main fermentation broth, showed good total acceptability and also contained 791 ppm saponin.

Transformation of Ginsenoside Rd to Ginsenoside F2 by Enzymes of Leuconostoc fallax LH3 (Leuconostoc fallax LH3이 생산하는 효소에 의한 Ginsenoside Rd의 Ginsenoside F2로의 전환)

  • Quan, Lin-Hu;Cheng, Le-Qin;Na, Ju-Ryun;Kim, Ho-Bin;Park, Min-Ju;Kim, Se-Hwa;Kim, Myung-Kyum;Yang, Deok-Chun
    • Korean Journal of Medicinal Crop Science
    • /
    • v.16 no.3
    • /
    • pp.155-160
    • /
    • 2008
  • Ginsenosides have been regarded as the principal components, responsible for the pharmacological and biological activities of ginseng. Absorption of major ginsenosides at the gastrointestinal tract was extremely low, when ginseng taken orally. In order to improve the absorption and bioavailability, transformation of major ginsenosides into more active and valuable minor ginsenoside is much required. In this present study, We isolated a lactic acid bacteria Leuconostoc fallax LH3 from the Korean fermented food Kimchi, which have higher ${\beta}$-glucosidase activity. Using the ethanol precipitated curd enzyme of Leuconostoc fallax LH3, we investigated the biotransformation of ginsenoside Rd at different experimental condition to increase transformation. The maximum convertion was supported at 30 $^{\circ}C$ and decreased when temperatures increased. In order to optimize the effect of pH, the curd enzyme was mixed 20 mM sodium phosphate buffer (pH 3.5 to pH 8.0). Ginsenoside Rd was almost hydrolyzed between pH 7.0 and pH 9.0, but not hydrolyzed above pH 10.0. Ginsenoside Rd was hydrolyzed after 24 hrs incubation, but whereas the ginsenoside F2 was appeared from 36 hrs, and all ginsenoside Rd was transformed to F2 after the 60 hrs incubation. Based on this study, the curd enzyme of Leuconostoc fallax LH3 transformed the ginsenoside Rd at the 30$^{\circ}C$ and the pH optimum of 7.0 to 9.0 after the 60 hrs incubation time.