• Title/Summary/Keyword: Fermentation tank

Search Result 55, Processing Time 0.028 seconds

Liquid culture condition of Tremella fuciformis mycelia (흰목이 균사 액체배양 조건)

  • Chang, Hyun-You;Lee, Chan;Choi, Sung-Woo;Yun, Jong Won
    • Journal of Mushroom
    • /
    • v.6 no.1
    • /
    • pp.27-31
    • /
    • 2008
  • The optimization of submerged culture conditions for mycelial growth and exopolysaccharide (EPS) production in an edible mushroom Tremella fuciformis were studied in shake flasks and bioreactors. The temperature of $28^{\circ}C$ and pH 8 in the beginning of fermentation in agitated flasks was the most efficient condition to obtain maximum mycelial biomass and EPS. The optimal medium constituents were as follows (g l-1): glucose 20, tryptone 2, $KH_2PO_4$ 0.46, $K_2HPO_4$ 1 and $MgSO_4H_2O$ 0.5. The fungus was cultivated under various agitation and aeration conditions in a 5L stirred-tank bioreactor. The maximum cell mass and EPS production were obtained at a relatively high agitation speed of 200 rpm and at an aeration rate of 2 vvm. The flow behavior of the fermentation broth was Newtonian and the maximum apparent viscosity (35 cP) was observed at a highly aerated condition (2 vvm). The EPS productivity in an airlift reactor was higher than that in the stirred-tank reactor. The EPS was protein-bound polysaccharides consisted of mainly mannose, xylose, and fructose. The molecular weights of EPS were determined to be $1.3{\sim}1.5{\times}10^6$.

  • PDF

Fermentation of Waste Woody Biomass for the Production of Bioenergy (바이오에너지생산을 위한 목질계 폐바이오매스의 발효)

  • Cho, Nam-Seok;Choi, Tae-Ho
    • Journal of the Korean Wood Science and Technology
    • /
    • v.36 no.6
    • /
    • pp.147-158
    • /
    • 2008
  • In this study, fermentation characteristics of waste agricultural and forest biomass for production of heat energy were focused to be used in agricultural farm households. The purpose of this study was focused on seeking practical utilization of agricultural and forest biomass wastes in agricultural farm households in the form of thermal energy by means of simple fermentation process. Fermentation process was performed in terms of different raw-materials and their mixture with different ratios. Urea, lime, and bioaids were added as fermenting aids. Moisture contents of fermenting substrates were adjusted to 55~65%. In order to optimize the fermentation process various factors, such as raw-materials, moisture contents, amount of fermenting aids, and practical measurement of hot-water temperature during fermentation were carefully investigated. The optimum condition of fermenting process were obtained from hardwood only and hardwood: softwood (50 : 50) beds. In case of hardwood only the highest temperature was recorded between 60 to $90^{\circ}C$ the lowest temperature was determined to more or less $40^{\circ}C$ and the average temperature was ranged to $50{\sim}60^{\circ}C$ and this temperature ranges were maintained up to 20~30 days. The optimum amount of additives were estimated to ca. 15 kg of urea, 20 kg of bioaids, and 10 kg of lime for 1 ton of substrate. To reach the highest temperature the optimum moisture content of fermenting substrate was proved to 55% among three moisture content treatments of 45%, 55% and 65%. The temperature of hot-water tank installed in fermenting bed of hardwood : grass (50 : 50) showed very different patterns according to measuring positions. In general, temperatures in the mid- and upper-parts of substrate piling were relative higher than lower and surface parts during 45-day fermentation process. The maximum temperature of fermenting stage was determined to $65^{\circ}C$, minimum temperature, more or less $40^{\circ}C$, and average temperature was $60^{\circ}C$. The water temperature of tank exit was ranged to $33{\sim}48^{\circ}C$ during whole measuring periods. It could be concluded that fermentation process of waste agricultural and forest biomass produces a considerable amounts of heat, averaging about $50{\sim}60^{\circ}C$ for maximum 3 months by using the heat exchanger (HX-helical type).

Metabolic Pathways of Hydrogen Production in Fermentative Acidogenic Microflora

  • Zhang, Liguo;Li, Jianzheng;Ban, Qiaoying;He, Junguo;Jha, Ajay Kumar
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.5
    • /
    • pp.668-673
    • /
    • 2012
  • Biohydrogen production from organic wastewater by anaerobically activated sludge fermentation has already been extensively investigated, and it is known that hydrogen can be produced by glucose fermentation through three metabolic pathways, including the oxidative decarboxylation of pyruvic acid to acetyl-CoA, oxidation of NADH to $NAD^+$, and acetogenesis by hydrogen-producing acetogens. However, the exact or dominant pathways of hydrogen production in the anaerobically activated sludge fermentation process have not yet been identified. Thus, a continuous stirred-tank reactor (CSTR) was introduced and a specifically acclimated acidogenic fermentative microflora obtained under certain operation conditions. The hydrogen production activity and potential hydrogen-producing pathways in the acidogenic fermentative microflora were then investigated using batch cultures in Erlenmeyer flasks with a working volume of 500 ml. Based on an initial glucose concentration of 10 g/l, pH 6.0, and a biomass of 1.01 g/l of a mixed liquid volatile suspended solid (MLVSS), 247.7 ml of hydrogen was obtained after a 68 h cultivation period at $35{\pm}1^{\circ}C$. Further tests indicated that 69% of the hydrogen was produced from the oxidative decarboxylation of pyruvic acid, whereas the remaining 31% was from the oxidation of NADH to $NAD^+$. There were no hydrogen-producing acetogens or they were unable to work effectively in the anaerobically activated sludge with a hydraulic retention time (HRT) of less than 8 h.

Effect of Inorganic Nanocomposite Based Liners on Deodorization of Kimchi

  • Chung, Kwon;Park, Hyun Jin;Shin, Yang Jai
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.27 no.2
    • /
    • pp.55-62
    • /
    • 2021
  • This study aims to reduce the rancid odor generated during the fermentation process of kimchi by inserting zinc oxide (ZnO) into an inorganic porous material with a high surface area to decompose or adsorb the fermentation odor. ZnO activated by the presence of moisture exhibits decomposition of rancid odors. Mixed with Titanium dioxide (TiO2), a photocatalyst. To manufacture the packaging liner used in this study, NaOH, ZnCl2, and TiO2 powder were placed in a tank with diatomite and water. The sludge obtained via a hydrothermal ultrasonication synthesis was sintered in an oven. After being pin-milled and melt-blended, the powders were mixed with linear low-density polyethylene (L-LDPE) to make a masterbatch (M/B), which was further used to manufacture liners. A gas detector (GasTiger 2000) was used to investigate the total amount of sulfur compounds during fermentation and determine the reduction rate of the odor-causing compounds. The packaging liner cross-section and surface were investigated using a scanning electron microscope-energy dispersive X-ray spectrometer (SEM-EDS) to observe the adsorption of sulfur compounds. A variety of sulfur compounds associated with the perceived unpleasant odor of kimchi were analyzed using gas chromatography-mass spectrometry (GC-MS). For the analyses, kimchi was homogenized at room temperature and divided into several sample dishes. The performance of the liner was evaluated by comparing the total area of the GC-MS signals of major off-flavor sulfur compounds during the five days of fermentation at 20℃. As a result, Nano-grade inorganic compound liners reduced the sulfur content by 67 % on average, compared to ordinary polyethylene (PE) foam liners. Afterwards SEM-EDS was used to analyze the sulfur content adsorbed by the liners. The findings of this study strongly suggest that decomposition and adsorption of the odor-generating compounds occur more effectively in the newly-developed inorganic nanocomposite liners.

A Study on Establishment of Technical Guideline of the Installation and Operation for the Efficient Bio-gasification Facility of Pig Manure and Food Waste(III): Design and Operation Guideline (가축분뇨 병합처리 바이오가스화를 위한 설계 및 운전 기술지침 마련 연구(III) 설계 및 운전 지침(안) 중심으로)

  • Lee, Dongjin;Moon, HeeSung;Son, Jihwan;Bae, Jisu
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.25 no.3
    • /
    • pp.99-111
    • /
    • 2017
  • The purpose of this study is to provide a design and operation technical guideline for meeting the appropriate design criteria to bio-gasification facilities treating organic wastes. Based on the results obtained during the field surveys, the overall design and operation guidelines for bio-gasification facilities, monitoring items, cycle and commissioning period were presented. According to the flow of anaerobic digestion process, Various design factors for bio-gasification facilities were proposed in this study. When designing the initial anaerobic digestion capacity, 10 ~ 30% of the treatment capacity was applied considering the discharge characteristics by the incoming organic wastes. At the import storage hopper process, limit concentration of transporting organic wastes was limited to TS 10 % or less, and limit concentration of inhibiting factor was suggested in operation of anaerobic digester. In addition, organic loading rate (OLR) was shown as $1.5{\sim}4.0kgVS_{in}/(m^3{\cdot}day)$ for the combined bio-gasification facilities of animal manure and food wastes. Desulfurization and dehumidification methods of biogas from anaerobic digestor and proper periods of liquifization tank were suggested in design guideline. It is recommended that the operating parameters of the biogasification facilities to be maintained at pH (acid fermentation tank 4.5~6.5, methane fermentation tank 6.0~8.0), temperature variation range within $2^{\circ}C$, management of volatile fatty acid and ammonia concentration less than 3,000 mg/L, respectively.

A study on the Development of a Drying and Fermentation Process of Domestic Animal Manure;II. Demonstration of a Pig Manure Treatment System on a Farm (가축분(家畜糞) 건조(乾燥) , 발효(醱酵) 복합시설(複合施設) 개발(開發) 연구(硏究);II. 돈분(豚糞) 건조(乾燥), 발효(醱酵), 복합시설(複合施設) 실증시험(實證試驗))

  • Yun, Sun-Gang;Jung, Kwang-Yong;Park, Woo-Kun;Kwon, Sun-Ik;Park, Hong-Jae;Yoo, Sun-Ho
    • Korean Journal of Environmental Agriculture
    • /
    • v.13 no.2
    • /
    • pp.223-230
    • /
    • 1994
  • A practical study on a drying and fermentation system equipped with a stirring machine operated mechanically, of pig manure was conducted to prove the efficiency of and practicability to an ordinary pig farm. The type of the drying bed was a round-shaped (r=3m) concrete structure and the stirring machine was adopted to stir and transfer dried pig manure to the fermentation tank. The dried pig manure was put into a fermentation tank ($V=18m^3$), which was aerated from pipe lines installed at the bottom. While water content of pig manure passing through a drying bed was remarkably reduced than before drying, the drying efficiency of this system decreased in winter. However, the temperature of pig manure piled up in the fermentation room in winter reached over $60^{\circ}C$ and excess water of pig manure was removed during the fermentation process. The reduction rate of water content of pig manure, to which dried pig manure was added as bulking material on the drying bed, was 52.1%, but when dried without bulking material it was only 19.7%. Although the content of $P_2O_5$ of dried pig manure was slightly higher than that of fresh pig manure, progressive changes in chemical composition between fresh and dried pig manure made no great difference. Among the contents of minerals of fresh and dried pig manure, CaO was the highest and the rest were in the decreasing order of $K_2O$, MgO, and $Na_2O$. Population density of E. coli and Streptococci of dried pig manure was reduced by 142 and 236 times that of fresh pig manure, respectively. The installation cost of this drying and fermentation system was 4,185,630 won (approximately 5,232 US $) and operating cost per year was 190,000 won (237.5US $) on the basis of self-labor condition.

  • PDF

음식물쓰레기와 폐활성 슬러지를 이용한 생물학적 수소생산

  • Sang, Byeong-In;Lee, Yun-Ji;Kim, Dong-Im;Kim, Dong-Geon;Kim, Ji-Seong;Yu, Myeong-Jin;Park, Dae-Won
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.11a
    • /
    • pp.299-306
    • /
    • 2005
  • Anaerobic fermentation of food waste (FW) and waste activated sludge (WAS) for hydrogen production was performed in CSTR (Continuous Stirred tank reactor) under various HRTs and volumetric mixing ratio (V/V) of two substrates, FW and WAS. The specific hydrogen production potential of FW was higher than that of WAS. However, pH drop in the CSTR for hydrogen production from FW was higher than that from WAS. The maintenance of desired pH during fermentative hydrogen production is regarded as the most important operation parameter for the stable hydrogen production. Therefore, when the potential of hydrogen production from FW and better buffer capacity of WAS, the proper mixture of FW and WAS for fermentative hydrogen production were considered as a useful complementary substrate. The maximum yield of specific hydrogen production, 140 mL/g VSS, was found at HRT of 2 day and the volumetric mixing ratio of 20:80 (WAS : FW). The spatial distribution of hydrogen producing bacteria was observed in anaerobic fermentative reactor using fluorescent in situ hybridization (FISH) method.

  • PDF

Integrated Hydrolyzation and Fermentation of Sugar Beet Pulp to Bioethanol

  • Rezic, Tonic;Oros, Damir;Markovic, Iva;Kracher, Daniel;Ludwig, Roland;Santek, Bozidar
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.9
    • /
    • pp.1244-1252
    • /
    • 2013
  • Sugar beet pulp is an abundant industrial waste material that holds a great potential for bioethanol production owing to its high content of cellulose, hemicelluloses, and pectin. Its structural and chemical robustness limits the yield of fermentable sugars obtained by hydrolyzation and represents the main bottleneck for bioethanol production. Physical (ultrasound and thermal) pretreatment methods were tested and combined with enzymatic hydrolysis by cellulase and pectinase to evaluate the most efficient strategy. The optimized hydrolysis process was combined with a fermentation step using a Saccharomyces cerevisiae strain for ethanol production in a single-tank bioreactor. Optimal sugar beet pulp conversion was achieved at a concentration of 60 g/l (39% of dry weight) and a bioreactor stirrer speed of 960 rpm. The maximum ethanol yield was 0.1 g ethanol/g of dry weight (0.25 g ethanol/g total sugar content), the efficiency of ethanol production was 49%, and the productivity of the bioprocess was 0.29 $g/l{\cdot}h$, respectively.

Performance Comparison of Continuous Reactors for Bioethanol Production Based on Glycerol (글리세롤 기반의 바이오에탄올 생산을 위한 연속생산반응기의 성능 비교)

  • Lee, Sang-Jun;Song, Yoon-Seok;Kim, Sung-Bong;Kang, Sung-Woo;Han, Sung-Ok;Park, Chul-Hwan;Kim, Seung-Wook
    • KSBB Journal
    • /
    • v.26 no.4
    • /
    • pp.328-332
    • /
    • 2011
  • Ethanol production using glycerol as a carbon source was performed by Enterobacter aerogenes immobilized on calcium alginate beads. To improve the ethanol production, the optimal conditions such as loading amount of immobilized cells and glycerol concentration were investigated. The optimal loading amount of immobilized cells and glycerol concentration were 10 mL of calcium alginate bead and 10 g/L, respectively. Consequently, glycerol consumption rate, ethanol concentration and yield were 0.32 g/$L{\cdot}h$, 3.38 g/L and 0.43 g/g on the batch production, respectively. Continuous production of ethanol was successfully achieved using two types of immobilized cell reactors (continuous stirred tank reactor and packed bed reactor) from 10 g/L of glycerol. In the continuous stirred tank reactor, glycerol consumption, ethanol concentration, specific productivity and yield were 9.8 g, 4.67 g/L, 1.17 g/$L{\cdot}h$, 0.48 g/g, respectively. The concentration of produced ethanol was 38-44% higher comparison to batch fermentation, and continuous stirred tank reactor showed better performance than packed bed reactor.

Monitoring of Recycling Treatment System for Piggery Slurry Using Neural Networks (신경회로망을 이용한 순환식 돈분처리 시스템의 모니터링)

  • Sohn, Jun-Il;Lee, Min-Ho;Choi, Jung-Hea;Koh, Sung-Cheol
    • Journal of Sensor Science and Technology
    • /
    • v.9 no.2
    • /
    • pp.127-133
    • /
    • 2000
  • We propose a novel monitoring system for a recycling piggery slurry treatment system through neural networks. Here we tried to model treatment process for each tank(influent, fermentation, aeration, first sedimentation and fourth sedimentation tanks) in the system based on population densities of heterotrophic and lactic acid bacteria. Principle component analysis(PCA) was first applied to identify a relation between input(microbial densities and parameters for the treatment) and output, and then multilayer neural networks were employed to model the treatment process for each tank. PCA filtration of input data as microbial densities was found to facilitate the modeling procedure for the system monitoring even with a relatively lower number of input. Neural networks independently trained for each treatment tank and their subsequent combinatorial data analysis allowed a successful prediction of the treatment system for at least two days.

  • PDF