• Title/Summary/Keyword: Fermentation system

Search Result 637, Processing Time 0.022 seconds

Improvements of GC and HPLC Analyses in Solvent (Acetone-Butanol-Ethanol) Fermentation by Clostridium saccharobutylicum Using a Mixture of Starch and Glycerol as Carbon Source

  • Tsuey, Liew Shiau;Ariff, Arbakariya Bin;Mohamad, Rosfarizan;Rahim, Raha Abdul
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.11 no.4
    • /
    • pp.293-298
    • /
    • 2006
  • A study on the feasibility of using improved computer-controlled HPLC and GC systems was carried out to shorten the time needed for measuring levels of the substrates (glucose, maltose, and glycerol) and products (acetone, butanol ethanol, acetic acid, and butyric acid) produced by Clostridium saccharobutylicum DSM 13864 during direct fermentation of sago starch to solvent. The use of HPLC system with a single injection to analyse the composition of culture broth (substrates and products) during solvent fermentation was achieved by raising the column temperature to $80^{\circ}C$. Although good separation of the components in the mixture was achieved, a slight overlap was observed in the peaks for butyric acid and acetone. The shape of the peak obtained and the analysis time of 26.66 min were satisfactory at a fixed flow rate of 0.8mL/min. An improved GC system was developed, that was able to measure the products of solvent fermentation (acetone, butanol, ethanol, acetic acid, and butyric acid) within 19.28 min. Excellent resolution for each peak was achieved by adjusting the oven temperature to $65^{\circ}C$.

Continuous Alcohol Fermentation by a Tower Fermentor with Cell Recycle Using Flocculating Yeast Strain (Flocculating 효모균주의 재순환에 의한 Tower 발효조를 이용한 연속알콜발효)

  • 페차랏칸자나시리완;유연우김공환
    • KSBB Journal
    • /
    • v.4 no.1
    • /
    • pp.11-14
    • /
    • 1989
  • A study on the continuous fermentation with cell recycle by a tower fermentor to produce ethanol has been carried out. ethanol fermentation was conducted with flocculating yeast strain, Saccharomyces cerevisiae TS4, to compare the ethanol productivity with conventional continuous process. Employing a 15% glucose feed, a cell density of 50 g/l was obtaind. The ethanol productivity of the cell recycle system was found to be 26.5g EtOH/1-hr, which was nearly 7.5 times higher than the conventional continuous process without cell recycle. A cell recycle ratio of 7 to 8 resulted in the highest ethanol productivity and cell concentration. Thus the cell recycle ratio was found to be a key factor in controlling the production of clarified overflow liquid. An aeration rate above 3.8 $\times$ 10-3 VVM seemed to decrease the ethanol productivity. The continuous fermentation with cell recycle was successfully used in the separation of cells from fermentation broth with enhancement of mixing in the tower fermentor.

  • PDF

Development of Pressure Monitoring System and Pressure Changes during Kimchi Fermentation (김치발효 중 가스압력 변화와 압력측정시스템의 개발)

  • Lee, Young-Jin;Chun, Jae-Kun
    • Korean Journal of Food Science and Technology
    • /
    • v.22 no.6
    • /
    • pp.686-689
    • /
    • 1990
  • For the monitoring of kimchi fermentation states, pressure detecting sensor and monitoring device were designed and fabricated. The system was consisted of an air tight fermenting tube(31.5 ml), strain gauge type pressure sensor and signal processing device built with operational amplifier and A/D converter, and interfaced to personal computer. Chiness cabbage kimchi was fermented in the plastic container($150{\times}220{\times}160mm$) at $25^{\circ}C\;and\;30^{\circ}C$. The fermentation was monitored with fermenting tubes containing kimchi. The pressure based kimchi fermentation curve was constructed and showed a typical kimchi curing curve having 2 stepwise pressure increasing pattern.

  • PDF

Continuous Alcohol Fermentation by a Flocculating Yeast (응집성 효모를 이용한 연속 알코올 발효)

  • 남기두;이인기;조훈호
    • Microbiology and Biotechnology Letters
    • /
    • v.19 no.5
    • /
    • pp.487-490
    • /
    • 1991
  • In this study continuous alcohol fermentation of molasses by the recirculation system has investigated. After cultivation of yeast cells in the YPD medium with increasing the medium concentration from 10 to 183.5 g/l stepwisely, the fermentation medium was replaced by molasses. The maximum cell mass was 25 g/l, and the mean cell mass during the operation was 23.5g/1, which was 3.4 times higher compared with a conventional batch system. The optimum fermentation conditions with feeding molasses of 180 g/l were obtained when the fermentation was carried out at 500 rpm and at the dilution rate of 0.037 $h^{-1}$. Under these conditions we could safely operate the fermentor for 645 h without any trouble. The maximum alcohol productivity was 4.9 g$l\cdot h$ with an alcohol concentration of 53.9 g/l at the dilution rate of 0.091$h^{-1}$.

  • PDF

The Screening of Fermented Medicinal Herbs to Identify Those with Anti-inflammatory Properties

  • Shen, Feng-Yan;Ra, Je-Hveon;Kim, Jin-Ju;Jung, Sung-Ki
    • The Journal of Internal Korean Medicine
    • /
    • v.30 no.1
    • /
    • pp.64-73
    • /
    • 2009
  • Objectives : Consumption of fermented foods has been known to alleviate some of the symptoms of atopy and may limit allergy development, while there are also many medicinal herbs proved to be effective for immunologically-mediated diseases. In this study, we introduced modern zymology to ferment some herbs to see if fermentation has the possibility of increasing the anti-inflammatory effects of medicinal herbs. Interleukin-4 (IL-4) and interferon-gamma $(INF-\gamma)$ have been demonstrated to be the main factors in the pathology of allergic diseases. Methods : We measured the levels of IL-4 and $INF-\gamma$ on concanavalin A-induced BALB/c mice spleen cells, which were subsequently treated with fermented and unfermented herbs. We then compared the fermented groups with unfermented groups to see if the anti-inflammatory effects of the herbs were influenced by fermentation. Results and Conclusions : Our results showed that fermentation had the potential to increase the anti-inflammatory effects of some medicinal herbs, and Astragalus membranaceus and Salvia miltiorrhiza would be the most suitable medicinal herbs for fermentation among the herbs in this study.

  • PDF

Effects of exogenous enzymes from invertebrate gut-associated bacteria on volatile organic compound emissions and microbiota in an in vitro pig intestine continuous fermentation model

  • Jong-Hoon Kim;Ho-Yong Park;Kwang-Hee Son
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.48 no.2
    • /
    • pp.67-77
    • /
    • 2024
  • This study aims to assess the efficacies of exogenous enzymes, derived from invertebrate gut-associated microbes, as feed additives, in reducing volatile organic compound (VOC) emissions using an in vitro pig intestine continuous fermentation system. An in vitro continuous fermentation model was used to simulate a comparable bionic digestion system by co-reacting feed, enzymatic additives (arazyme, mannanase, and xylanase, derived from the gut bacteria of Nephila clavata, Eisenia fetida, and Moechotypa diphysis, respectively), and gastrointestinal microbes, followed by an analysis of their correlations. A significant correlation was observed between exogenous enzyme supplementation and reduced VOC emissions in the fecal phase of continuous fermentation (p < 0.05). The concentration of VOCs decreased by 3.75 and 2.75 ppm in the treatment group following arazyme and multi-enzyme supplementation, respectively, compared to that in the control group (7.83 ppm). In addition, supplementation with arazyme and multiple enzymes significantly affected the microbial composition of each fermentation phase (p < 0.05). In particular, Lactiplantibacillus pentosus and Pediococcus pentosaceus, which changed in abundance according to arazyme or multi-enzyme supplementation, exhibited a positive relationship with VOC emissions. These results suggest that exogenous enzymes derived from invertebrate gut-associated bacteria can be efficiently applied as feed additives, leading to a reduction in VOC emissions.

The Effect of Vinegar Fermentation on the Nutritional Quality of Lotus Flower Fermented Product

  • Nam, Mikyung;Chrysta, Maynanda Brigita;Lee, Eunsuk;Choi, Wonsik
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.22 no.1
    • /
    • pp.61-69
    • /
    • 2019
  • All the parts of lotus, including the seed, rhizome, leaf, stalk, petal, anther, pericarp, and fruit receptacle, have been used in traditional medicine system as a health beneficial supplement. However the most usually used from lotus plant is only the root. Therefore in this study, it will be discussed more the utilization of other parts of the lotus, namely the flower of lotus. The petals and stamens of lotus actually are also rich in bioactive components such as flavonoids and alkaloids, are used in the treatment of tissue inflammation, cancer, skin disease, and also for us as antidotes. One of the biotechnological process that can be used to improve the nutritional content, sensory, and also antioxidant activities is fermentation process. The final product desired from the fermentation process in this study is vinegar. The microbial strain powder used is Uinkin fermented powder with three variations of fermentation. The variations given in this study were initial sugar 32%, 24%, and 14% with the same fermentation temperature, $35^{\circ}C$ for 3 months. The results obtained showed that the pH value and sugar content of products during the fermentation process were decreasing during the fermentation process, with total polyphenol content of $283.7{\pm}97.6mg/100g\;QAE$, and total flavonoid content of $3.3{\pm}0.0mg/100g\;QAE$. For the DPPH radical scavenging ability of the fermentation product also increased in a concentration dependent manner, with ORAC activity of the product showed a high activity of $20.7{\pm}0.41{\mu}M$ TE. Therefore, fermentation process can be the one of method for improving the product. The efficiency of lotus flower vinegar fermentation can be reached with an initial sugar condition of 25% (sample B).

Fermentation Patterns of Chungkookjang and Kanjang by Bacillus licheniformis B1 (Bacillus licheniformis B1에 의한 청국장 및 간장 발효)

  • Lee, Jae-Jung;Lee, Dong-Seok;Kim, Han-Bok
    • Korean Journal of Microbiology
    • /
    • v.35 no.4
    • /
    • pp.296-301
    • /
    • 1999
  • A Bacillus strain from Korean soil was isolated and identified to be Bacillus licheniformis B1 through various biochemical tests, VITEK, and MIDI system analysis. The strain produced extracellular amylase and protease. Whether or not the strain can perform Chungkookjang fermentation with autoclaved soybean and Kanjang fermentation was determined in this study. In Chungkookjang fermentation, browining materials of strong anti-oxidant increased 8-fold, and 2-fold in Kanjang, compared with initiation material for fermentation. Maximal protease activity in Chungkookjang was observed one day after inoculation. Protease activities in Kanjang decreased to the half, and then maintained constant values during fermentation, probably due to the inhibitory effect of salt on protease activities. High molecular mass of nucleic acids was identified in Chungkookjang and Kanjang. Since the nucleic acids were not observed in autoclaved soybean, they seem to be originated from B. licheniformis B1. This study demonstrated successive fermentation of Chungkookjang and Kanjang by B. licheniformis B1 isolated from nature, and suggested possible development of food rich in browing and nucleic acids.

  • PDF

Economic Evaluation of Hydrogen Production by Fermentation (발효에 의한 수소생산의 경제성 평가)

  • Gim, Bong-Jin;Kim, Jong-Wook;Park, Sang-Yong
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.19 no.2
    • /
    • pp.145-155
    • /
    • 2008
  • This paper deals with an economic evaluation of hydrogen production by fermentation. We evaluate the economic feasibility of domestic hydrogen production by fermentation utilizing glucose and waste water sludge in terms of hydrogen production prices. In addition, we make some sensitivity analysis of hydrogen prices by changing the values of input factors such as the price of glucose, the capital cost of the hydrogen production system, and the hydrogen production yields. The estimated hydrogen prices of the two-step dark-light hydrogen production by fermentation utilizing glucose was $5,347won/kgH_2$, and the single-step hydrogen production by anaerobic fermentation utilizing waste water sludge was $4,255won/kgH_2$, respectively. It is expected that the hydrogen production price by anaerobic fermentation can be reduced if we produce methane or hydrogen utilizing by-products such as alcohols and organic acids, or the government imposes some legal regulations on the treatment of waste water sludge.

Bioprocess Strategies and Recovery Processes in Gibberellic Acid Fermentation

  • Shukla, Ruchi;Srivastava, Ashok K.;Chand, Subhash
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.8 no.5
    • /
    • pp.269-278
    • /
    • 2003
  • Gibberellic acid (GA$_3$) is a commercially important plant growth hormone, which is gaining much more attention all over the world due to its effective use in agriculture and brewing industry. Industrially it is produced by submerged fermentation technique using Ascomycetous fungus Gibberella fujikuroi. Solid state and immobilized cell fermentation techniques had also been developed as an alternative to obtain higher yield of GA$_3$. This review summarizes the problems of GA$_3$ fermentation such as production of co-secondary metabolites along with GA$_3$, substrate inhibition and degradation of GA$_3$ to biologically inert compound gibberellenic acid, which limits the yield of GA$_3$ in the fermentation medium. These problems can be overcome by various bioprocessing strategies e.g. two - stage and fed batch cultivation processes. Further research on bioreactor operation strategies such as continuous and / or extractive fermentation with or without cell recycle / retention system need to be investigated for improvement in yield and productivity. Down stream processing for GA$_3$ isolation is also a challenge and procedures available for the same have been critically evaluated.