• Title/Summary/Keyword: Fermentation conditions

Search Result 1,148, Processing Time 0.028 seconds

Comparing Medical Efficacy of Socheongyong-tang with Lactic Acid Bacteria Fermented Socheongyong-tang (소청룡탕과 유산균 발효 소청룡탕의 약리효능의 비교)

  • Han, Jong-Hyun;Lee, Seung-Yong
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.25 no.2
    • /
    • pp.246-256
    • /
    • 2011
  • To compare the medical efficacy of original Socheongyong-tang with fermented Socheongyong-tang, we've studied the two medicines according to the search for optimal bacteria and optimal conditions, component analysis, assessment of medical efficacy and toxicity, and have the result below. The results were obtained as follows: Considering bacterial growth, $CO_2$ gas emission and pH, we examined that using 3 kinds of bacteria(S. cerevisiae KCTC 7913, L. casei KCTC 3109, L. brevis KCTC 3102) is desirable. There is no main difference in optimum conditions between incubator and shaking incubator. And it is considered that ideal fermentation time is 2 days after vaccination. As the result of componential analysis of before and after fermentation, there's a noticeable decrease of total sugar and protein. But there's no alterations in total phenolics compounds and in total flavonoid compounds that influence on medical effect. The result was interpreted that it can promote the assimilation of herbal decoction after fermentation. As the result of medical efficacy assessment, we can check out that there is more anti-oxidating effects in fermented Socheongyong-tang, whereas anti-inflammatory effects and obesity-preventing effects were favorable in original Socheongyong-tang. And there is no main difference of whitening and COX-2 removing effects between before and after the fermentation. As a result of assessing weight change, hepatotoxicity and nephrotoxicity, we can not notice any unusual difference between before and after the fermentation. According to the results above, it is considered that we checked out the optimal bacteria and optimal conditions, advantages and disadvantages of the medical efficacy of original Socheongyong-tang and fermented Socheongyong-tang. And we suggest that there will have to be a following in-depth and systematic research on this subject in the future.

Characterization of DNJ production for large-scale fermentation of mulberry leaf

  • Kwon, O-Chul;Ju, Wan-Taek;Kim, Hyun-Bok;Sung, Gyoo-Byung;Kim, Yong-Soon
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.35 no.2
    • /
    • pp.111-117
    • /
    • 2017
  • Mulberry leaves containing 1-deoxynojirimycin (DNJ) known to be a strong inhibitory effect for ${\alpha}-glucosidase$. Thus, DNJ has been recognized as a potentially important source for prevent or treat hyperglycemia. More effective method for the DNJ high-production is needed because DNJ content of natural mulberry leaf are as low as 0.1%. Many researchers have studied for the DNJ high-production in mulberry leaves such as the harvest season, fermentation using microorganisms, optimal culture conditions, and optimal extraction conditions. In order to provide for useful data that is anticipated at the level of industrial scale, we investigated ${\alpha}-glucosidase$ inhibitory activity, pH value and DNJ content in large-scale based on the optimal culture conditions for mulberry leaf fermentation of small-scale in our previous study. The ${\alpha}-glucosidase$ inhibitory activity, pH value, and DNJ content in this study were measured from the mulberry leaf fermentation broth for 7 days. During mulberry leaf fermentation, the ${\alpha}-glucosidase$ inhibitory activity and DNJ content was increased until 2 to 4 days, but after 4 day was decreased. The pH value showed a decreasing trend up to 2 day, and little changes in 2 to 4 days. However, the pH was started to increase after 4 days.

Fermentation Method of Kimchi Using Halophilic Lactobacillus sp. HL-48 and Lactic Acid (Halophilic lactobacillus sp. HL-48균주와 젖산을 이용한 김치의 제조 방법)

  • 최경숙;성창근;김명희;오태광
    • Microbiology and Biotechnology Letters
    • /
    • v.27 no.3
    • /
    • pp.246-251
    • /
    • 1999
  • To extend the storage period and to inhibit contamination of Kimchi by Escherichia coli, conditions of Kimchi brining and effects of the fermentation starter, halophilic Lactobacillus HL-48 were investigated. Optimum brining condition for Kimchi was accomplished in 15% NaCl and at pH2.5-3.0 adjusted by lactic acid. Starter-treated Kimchi showed pH 4.2 after 18hr fermentation, while the pH of starter-untreated Kimchi resulted in 3.3. After 36hr fermentation, the number of E. coli in starter-treated Kimchi was found clearly to decrease and not detected macroscopically, but contamination of E. coli (5.3$\times$103CFU/ml) was observed in starter-untreated sample. Organic acids in Kimchi contained organic acids such as oxalic acid, citric acid, malic acid and lactic acid. among ther, lactic acid content was remarkably high in the early fermentation stages. However, from 24hr fermentation, lactic acid content of starter-untreated Kimchi was higher than that of starter-treated Kimchi.

  • PDF

Comparison of Liquid and Solid-State Fermentation Processes for the Production of Enzymes and Beta-Glucan from Hulled Barley

  • Lee, Se Yeon;Ra, Chae Hun
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.3
    • /
    • pp.317-323
    • /
    • 2022
  • Solid-state fermentation using hulled barley was carried out to produce enzymes and β-glucan. The one-factor-at-a-time experiments were carried out to determine the optimal composition of the basal medium. The modified synthetic medium composition in liquid-state fermentation was determined to be 70 g/l hulled barley, 0 g/l rice bran, 5 g/l soytone, and 6 g/l ascorbic acid. Optimal pretreatment conditions of hulled barley by solid-state fermentation were evaluated in terms of maximum production of fungal biomass, amylase, protease, and β-glucan, which were 1.26 mg/g, 31310.34 U/g, 2614.95 U/g, and 14.6% (w/w), respectively, at 60 min of pretreatment condition. Thus, the solid-state fermentation process was found to enhance the overall fermentation yields of hulled barley to produce high amounts of enzymes and β-glucan.

On-line Monitoring of a Glucose Concentration on a Fermentation Process of Wine for an Automatic Control of a Fermentation Process (발효공정 자동제어를 위한 포도주 발효 중 포도당 농도 온라인 측정)

  • Song, Dae-Bin
    • Journal of Biosystems Engineering
    • /
    • v.33 no.4
    • /
    • pp.276-281
    • /
    • 2008
  • A flow injection analysis method (FIA), which analyzes sample conditions after injecting a sample and reagents into a continuous stream, are recognized as the most adequate analyzing method according to the increase of sampling frequency, the decrease of measuring time and the diversity of measuring targets. Specially, the FIA is considered to be used effectively for the control of a fermentation process to produce fermentation food and useful microbial production by activation of a fermentation industry for development of biological materials. In this study, a flow injection analysis sensor unit was developed for on-line monitoring of the fermentation process. The performance was verified by on-line measuring the concentration of glucose of the fermentation process of wine. The glucose concentrations of the samples were measured every 12 hours during the whole fermentation process and compared with those by a HPLC. The concentration relative errors of glucose on the fermentation process of wine showed below 30% within 72 hours and over 50% after the 72 hours. The sensor unit had potential to on-line monitoring of the fermentation process but some problems to overcome for an commercial application.

Ethanol Production from Rice Winery Waste - Rice Wine Cake by Simultaneous Saccharification and Fermentation Without Cooking

  • Vu, Van Hanh;Kim, Keun
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.10
    • /
    • pp.1161-1168
    • /
    • 2009
  • Ethanol production by the simultaneous saccharification and fermentation (SSF) of low-value rice wine cake (RWC) without cooking was investigated. RWC is the filtered solid waste of fermented rice wine mash and contains 53% raw starch. For the SSF, the RWC slurry was mixed with the raw-starch-digesting enzyme of Rhizopus sp. and yeast, where the yeast strain was selected from 300 strains and identified as Saccharomyces cerevisiae KV25. The highest efficiency (94%) of ethanol production was achieved when the uncooked RWC slurry contained 23.03% starch. The optimal SSF conditions were determined as 1.125 units of the raw-starch-digesting enzyme per gram of RWC, a fermentation temperature of $30^{\circ}C$, slurry pH of 4.5, 36-h-old seeding culture, initial yeast cell number of $2{\times}10^7$ per ml of slurry, 17 mM of urea as the nitrogen additive, 0.25 mM of $Cu^{2+}$ as the metal ion additive, and a fermentation time of 90 h. Under these optimal conditions, the ethanol production resulting from the SSF of the uncooked RWC slurry was improved to 16.8% (v/v) from 15.1% (v/v) of pre-optimization.

Optimal Fermentation Conditions (Temperature and Salt Concentration) for Preparing Flounder Verasper moseri Jordan et Gilberu Sikhae (가자미(Verasper moseri Jordan et Gilberu)식해의 최적 발효 조건(온도 및 염도))

  • Han, Dae-Won;Han, Ho-Jun;Kim, Deok-Gi;Im, Mi-Jin;Cho, Soon-Yeong
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.46 no.6
    • /
    • pp.689-695
    • /
    • 2013
  • Flounder Verasper moseri Jordan et Gilberu sikhae is a traditional salt-fermented food in Korea. We investigated the optimal processing conditions for desirable quality-controlled flounder sikhae by analyzing the physiochemical properties, microbiological species, and organoleptic properties. The optimal fermentation temperature, salt concentration, and fermentation period for preparing flounder sikhae of acceptable quality were $10^{\circ}C$, 4%, and 14 days, respectively. The amino-N and volatile basic nitrogen (VBN) contents of rhe acceptable quality flounder sikhae were 243.65 mg/100 g and 44.25 mg/100 g, respectively.

Ethanol Production from Seaweed, Enteromorpha intestinalis, by Separate Hydrolysis and Fermentation (SHF) and Simultaneous Saccharification and Fermentation (SSF) with Saccharomyces cerevisiae

  • Cho, YuKyeong;Kim, Min-Ji;Kim, Sung-Koo
    • KSBB Journal
    • /
    • v.28 no.6
    • /
    • pp.366-371
    • /
    • 2013
  • Ethanol productions were performed by separate hydrolysis and fermentation (SHF) and simultaneous saccharification and fermentation (SSF) processes using seaweed, Enteromorpha intestinalis (sea lettuce). Pretreatment conditions were optimized by the performing thermal acid hydrolysis and enzymatic hydrolysis for the increase of ethanol yield. The pretreatment by thermal acid hydrolysis was carried out with different sulfuric acid concentrations in the range of 25 mM to 75 mM $H_2SO_4$, pretreatment time from 30 to 90 minutes and solid contents of seaweed powder in the range of 10~16% (w/v). Optimal pretreatment conditions were determined as 75 mM $H_2SO_4$ and 13% (w/v) slurry at $121^{\circ}C$ for 60 min. For the further saccharification, enzymatic hydrolysis was performed by the addition of commercial enzymes, Celluclast 1.5 L and Viscozyme L, after the neutralization. A maximum reducing sugar concentration of 40.4 g/L was obtained with 73% of theoretical yield from total carbohydrate. The ethanol concentration of 8.6 g/L of SHF process and 7.6 g/L of SSF process were obtained by the yeast, Saccharomyces cerevisiae KCTC 1126, with the inoculation cell density of 0.2 g dcw/L.

Alcohol Fermentation Characteristics of the Korean Native Mulberry (Morus spp.)

  • Kim, Ok-Mi;Woo, Seung-Mi;Park, Yong-Kon;Jeong, Yong-Jin
    • Preventive Nutrition and Food Science
    • /
    • v.11 no.2
    • /
    • pp.166-170
    • /
    • 2006
  • This study was carried out to investigate the fermentation characteristics and optimum conditions for alcohol fermentation of the Korean native mulberry. The yeast strains of S. kluyveri DJ97, La parisienne (Saccharomyces cerevisiae, Netherlands) and Enoferm (Saccharomyces cerevisiae, Denmark) produced higher alcohol concentrations than other strains, and further study was therefore performed with these three species. The optimum additional water content for maximizing alcohol concentration was 250% (v/w). The alcohol concentrations were rapidly increased in the first 4 days under the optimum conditions and reached 13.8% for S. kluyveri DJ97, 14.0% for La parisienne and 14.0% for Enoferm, respectively. Residual sugar concentration was decreased steadily from the beginning of fermentation until 5 days, after which it maintained a constant level. The pH was decreased steadily in the log phase during further maturation. However, the pH underwent a slight decrease after 4 days and then was stabilized during further maturation. Methanol concentrations for the three species used were analyzed after 60 days maturation and were lower than the levels regulated by the food standard. Fusel oils such as n-propanol, iso-butanol, and iso-amyl-alcohol were produced as by-products with the highest production from Enoferm and the lowest from S. kluyveri DJ97.

Continuous Alcohol Fermentation by a Flocculating Yeast (응집성 효모를 이용한 연속 알코올 발효)

  • 남기두;이인기;조훈호
    • Microbiology and Biotechnology Letters
    • /
    • v.19 no.5
    • /
    • pp.487-490
    • /
    • 1991
  • In this study continuous alcohol fermentation of molasses by the recirculation system has investigated. After cultivation of yeast cells in the YPD medium with increasing the medium concentration from 10 to 183.5 g/l stepwisely, the fermentation medium was replaced by molasses. The maximum cell mass was 25 g/l, and the mean cell mass during the operation was 23.5g/1, which was 3.4 times higher compared with a conventional batch system. The optimum fermentation conditions with feeding molasses of 180 g/l were obtained when the fermentation was carried out at 500 rpm and at the dilution rate of 0.037 $h^{-1}$. Under these conditions we could safely operate the fermentor for 645 h without any trouble. The maximum alcohol productivity was 4.9 g$l\cdot h$ with an alcohol concentration of 53.9 g/l at the dilution rate of 0.091$h^{-1}$.

  • PDF