• Title/Summary/Keyword: Fermentation conditions

Search Result 1,145, Processing Time 0.026 seconds

Photoproduction of Hydrogen from Acetate by Rhodopseudomonas: Effect of Culture Conditions and Sequential Dark/Light Fermentation

  • Oh, You-Kwan;Seol, Eun-Hee;Park, Sung-Hoon
    • 한국생물공학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.422-427
    • /
    • 2003
  • Rhodopseudomonas palustris P4 can produce $H_2$ either from CO by water-gas shift reaction or from various sugars by anaerobic fermentation. Fermentative $H_2$ production by P4 is fast, but its yield is relatively low due to the formation of various organic acids. In order to increase $H_2$ production yield from glucose, P4 was investigated for the photo-fermentation of acetate which is a major by-product of fermentative $H_2$ production. Experiments were performed in batch modes using both light-grown and dark-grown cells. When the dark-grown P4 was challenged with light and acetate, $H_2$ was produced with the consumption of acetate after a lag period of 25 h. $H_2$ production was inhibited when a nitrogen source, especially ammonium, is present. When the dark-fermentation broth containing acetate was adopted for photo-fermentation with light-grown cells, $H_2$ production and concomitant acetate consumption occurred without a lag period. The $H_2$ yield was estimated as 2.4 - 2.8 mol $H_2/mol$ acetate and the specific $H_2$ production rate was as 9.8 ml $H_2/g$ cell${\cdot}$h, The fact that a single strain can perform both dark- and light-fermentation gives a great advantage in process development Compared to a one-step dark-fermentation, the combined dark- and light-fermentation can increase the $H_2$ production yield on glucose by two-fold.

  • PDF

Nutritional Value of Rice Bran Fermented by Bacillus amyloliquefaciens and Humic Substances and Its Utilization as a Feed Ingredient for Broiler Chickens

  • Supriyati, Supriyati;Haryati, T.;Susanti, T.;Susana, I.W.R.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.2
    • /
    • pp.231-238
    • /
    • 2015
  • An experiment was conducted to increase the quality of rice bran by fermentation using Bacillus amyloliquefaciens and humic substances and its utilization as a feed ingredient for broiler chickens. The experiment was carried out in two steps. First, the fermentation process was done using a completely randomized design in factorial with 16 treatments: i) Dosage of B.amyloliquefaciens ($2.10^8cfu/g$), 10 and 20 g/kg; ii) Graded levels of humic substances, 0, 100, 200, and 400 ppm; iii) Length of fermentation, three and five days. The results showed that the fermentation significantly (p<0.05) reduced crude fiber content. The recommended conditions for fermentation of rice bran: 20 g/kg dosage of inoculums B. amyloliquefaciens, 100 ppm level of humic substances and three days fermentation period. The second step was a feeding trial to evaluate the fermented rice bran (FRB) as a feed ingredient for broiler chickens. Three hundred and seventy-five one-day-old broiler chicks were randomly assigned into five treatment diets. Arrangement of the diets as follows: 0%, 5%, 10%, 15%, and 20% level of FRB and the diets formulation based on equal amounts of energy and protein. The results showed that 15% inclusion of FRB in the diet provided the best bodyweight gain and feed conversion ratio (FCR) values. In conclusion, the nutrient content of rice bran improved after fermentation and the utilization of FRB as a feed ingredient for broiler chickens could be included up to 15% of the broiler diet.

Monitoring on Alcohol Fermentation Characteristics of Strawberry (딸기의 알콜 발효 특성 모니터링)

  • Lee, Jin-Man;Kim, Suk-Kyung;Lee, Gee-Dong
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.32 no.5
    • /
    • pp.679-683
    • /
    • 2003
  • Strawberries were fermented for their effective value added product. In alcohol fermentation of strawberries, alcohol content was maximum value (9.22% ) under the condition of 16.32$^{\circ}$Brix of initial sugar concentration, 53.03 hr of fermentation time and 28.8$^{\circ}C$ of fermentation temperature. Acetic acid content revealed minimum value (0.49%) under the condition of 13.18$^{\circ}$Brix of initial sugar concentration, 50.99 hr of fermentation time and 24.96$^{\circ}C$ of fermentation temperature. Residual sugar content revealed minimum value (3.97$^{\circ}$Brix) under the condition of 15.00$^{\circ}$Brix, 52.00 hr and 26.0$0^{\circ}C$. The optimum conditions for each alcohol fermentation were 14$^{\circ}$Brix, 50 hr and 28$^{\circ}C$.

Immobilization of Lactobacillus salivarius ATCC 11741 on Loofa Sponge Coated with Chitosan for Lactic Acid Fermentation

  • Chantawongvuti, R.;Veerajetbodithat, J.;Jaturapiree, P.;Muangnapoh, C.
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.1
    • /
    • pp.110-116
    • /
    • 2010
  • Lactic acid (LA) fermentation by Lactobacillus salivarius ATCC 11741 immobilized on loofa sponge (LS) was evaluated. To increase the surface area of LS for cell immobilization, $H_2O_2$ and chitosan were introduced as surface modifying reagents. Four chitosans of different molecular weights were separately coated on LS. All experiments were conducted in shaking flask mode at 100 rpm rotating speed and $37^{\circ}C$ with 5% $CaCO_3$ as a pH regulating agent. The effects of initial glucose concentration were investigated in the range of 20-100 g/l on LA fermentation by free cells. The results indicate that the maximum concentration of LA was produced with 50 g/l glucose concentration. The immobilized cell system produced 1.5 times higher concentration than free cells for 24 h of fermentation. Moreover, immobilized cells can shorten the fermentation time by 2-fold compared with free cells at the same level of LA concentration. At 1% (w/v) chitosan in 2% (v/v) acetic acid, the Yp/s and productivities of various molecular weights of chitosans were insignificantly different. Repeated batch fermentations showed 5 effective recycles with Yp/s and productivity in the range of 0.55-0.85 and 0.90-1.20 g/l.h, respectively. It is evident that immobilization of L. salivarius onto LS permits reuse of the system under these fermentation conditions. Scanning electron micrographs indicated that there were more intact cells on the chitosan-treated LS than on the untreated LS, thus confirming the effectiveness of the LS-chitosan combination when being utilized as a promising immobilization carrier for LA fermentation.

Kinetics of Kojic Acid Fermentation by Aspergillus flavus Link S44-1 Using Sucrose as a Carbon Source under Different pH Conditions

  • Rosfarizan M.;Ariff A.B.
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.11 no.1
    • /
    • pp.72-79
    • /
    • 2006
  • Kojic acid production by Aspergillus flavus strain S44-1 using sucrose as a carbon source was carried out in a 250-mL shake flask and a 2-L stirred tank fermenter. For comparison, production of kojic acid using glucose, fructose and its mixture was also carried out. Kojic acid production in shake flask fermentation was 25.8 g/L using glucose as the sole carbon source, 23.6 g/L with sucrose, and 6.4 g/L from fructose. Reduced kojic acid production (13.5 g/L) was observed when a combination of glucose and fructose was used as a carbon source. The highest production of kojic acid (40.2 g/L) was obtained from 150 g/L sucrose in a 2 L fermenter, while the lowest kojic acid production (10.3 g/L) was seen in fermentation using fructose as the sole carbon source. The experimental data from batch fermentation and resuspended cell system was analysed in order to form the basis for a kinetic model of the process. An unstructured model based on logistic and Luedeking-Piret equations was found suitable to describe the growth, substrate consumption, and efficiency of kojic acid production by A. flavus in batch fermentation using sucrose. From this model, it was found that kojic acid production by A. flavus was not a growth-associated process. Fermentation without pH control (from an initial culture pH of 3.0) showed higher kojic acid production than single-phase pH-controlled fermentation (pH 2.5, 2.75, and 3.0).

Optimal Condition for Deacidification Fermentation of Wild Grape Wine by Mixed Culture (혼합배양에 의한 산머루주의 감산발효 최적조건)

  • Kim, Seong-Ho
    • Applied Biological Chemistry
    • /
    • v.51 no.1
    • /
    • pp.17-23
    • /
    • 2008
  • In order to prevent wine quality deterioration caused by strong sour taste from raw and other materials during fermentation of wild grape wine, the various mixed cultures conditions of the deacidification fermentation and the alcohol fermentation process by inoculation of mixed strains were investigated. As a result of mixed cultures process after the inoculation of Schizosaccharomyces pombe and Schizosaccharomyces japonicus with each deacidification fermentation strain in a culture of Saccharomyces sp. SMR-3 which was used in the alcohol fermentation strain of wild grape, cultures for 12 days at $22^{\circ}C$ with Saccharomyces sp. SMR-3 and Schizosaccharomyces pombe resulted in the maximum alcohol content at $15.8{\pm}0.2%$ and the minimum with the acidity of $0.44{\pm}0.02%$, the total organic acid of $648.96{\pm}7.14$ mg% and malic acid of $99.30{\pm}1.24$ mg%. Mixed cultures with Saccharomyces sp. SMR-3 and Schizosaccharomyces pombe under the optimal condition for the deacidification fermentation of wild grape wine showed 2% higher alcohol content, 51.65% lower acidity, 48.02% lower total organic acid, and 81.12% lower malic acid than a single culture of Saccharomyces sp. SMR-3.

Rapid Enzymatic Fermentation of Anchovy Sauce by Protease

  • Jeong, Yong-Jin;Seo, Ji-Hyung
    • Preventive Nutrition and Food Science
    • /
    • v.9 no.3
    • /
    • pp.213-217
    • /
    • 2004
  • We evaluated the possibility of rapid fermentation of anchovy sauce using a commercial protease. The fermentation characteristics were monitored by response surface analysis. The content of total nitrogen was high (around 1 %) with fermentation at 51.7~57.5$^{\circ}C$ after 10.2~16.4 hours, but rapidly decreased at higher temperatures (6$0^{\circ}C$ or over), while the $R^2$ of polynomial equation was 0.9185 (p<0.05). The amino acid content rapidly decreased to approximately 600 mg% and less at high temperature (6$0^{\circ}C$ and over), and the $R^2$ was 0.9578 (p<0.01). The free amino acids were affected more by fermentation time when fermentation temperature was lower, and the $R^2$ for total free amino acids was 0.8496 (p<0.10). The $R^2$ for sweet free amino acids was 0.9144 (p<0.05). According to the results of this study, the optimal conditions for anchovy sauce fermentation were predicted to be 52.5~56.9$^{\circ}C$ and 13.3~16.4 hours, and the predicted values and actual values of each response variable were similar to each other when the fermentation was performed at a random point within the optimal range. Also, the comparison of the quality between the quick anchovy sauce and sauces currently on the market showed that the content of sweet amino acids was higher in the former than in the latter.

Optimization of Fermentation Process for Acetic Acid Production (초산 생성을 위한 발효공정의 최적화)

  • Shin, Jin-A;Oh, Nam-Soon
    • Food Engineering Progress
    • /
    • v.14 no.3
    • /
    • pp.217-221
    • /
    • 2010
  • Various conditions of acetic acid fermentation by Acetobacter aceti B20 strain were investigated and evaluated to optimize the fermentative production of acetic acid. The effects of the initial ethanol concentration on growth and acid productivity in a flask and fermentor were also studied. The growth of A. aceti B20 strain was inhibited as the concentration of ethanol increased. However, the highest total acidity and fermentation yield were 5.34% and 56.1%, respectively when the initial concentration of ethanol was 7% in the batch fermentation. Although the concentration of initial glucose influenced the growth rate of B20 strain, it did not influence the total acidity in the flask culture. When the agitation speed increased, the growth, total acidity and fermentation yield were all improved. In fed-batch fermentation, total acidities and fermentation yields were 7.14-8.76% and 39.1-53.0%, respectively, and their values mostly depended on the feeding methods.

Modeling Growth Kinetics of Lactic Acid Bacteria for Food Fermentation

  • Chung, Dong-Hwa;Kim, Myoung-Dong;Kim, Dae-Ok;Koh, Young-Ho;Seo, Jin-Ho
    • Food Science and Biotechnology
    • /
    • v.15 no.5
    • /
    • pp.664-671
    • /
    • 2006
  • Modeling the growth kinetics of lactic acid bacteria (LAB), one of the most valuable microbial groups in the food industry, has been actively pursued in order to understand, control, and optimize the relevant fermentation processes. Most modeling approaches have focused on the development of single population models. Primary single population models provide fundamental kinetic information on the proliferation of a primary LAB species, the effects of biological factors on cell inhibition, and the metabolic reactions associated with cell growth. Secondary single population models can evaluate the dependence of primary model parameters, such as the maximum specific growth rate of LAB, on the initial external environmental conditions. This review elucidates some of the most important single population models that are conveniently applicable to the LAB fermentation analyses. Also, a well-defined mixed population model is presented as a valuable tool for assessing potential microbial interactions during fermentation with multiple LAB species.

Hydrogen and Organic Acids Production by Fermentation Using Various Anaerobic Bacteria (각종 혐기성 미생물 발효에 의한 유기산 및 수소생산)

  • Kim, Mi-Sun;Yoon, Y.S.;Sim, S.J.;Park, T.H.;Lee, J.K.
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.13 no.4
    • /
    • pp.321-329
    • /
    • 2002
  • Clostridium butyricum, Lactobacillus amylophillus, Lactobacillus amylovorus, Lactobacillus acidophillus, AI-9 produced hydrogen and /or organic acids using glucose, lactose and starch at the anaerobic culture conditions. Cl. butyricum NCIB 9576 evolved 1,700 ml H2/L-culture broth and accumulated butyric acid, acetic acid, propionic acid and ethanol in its culture broth when lactose was used as a carbon source during 24 hrs of fermentation. L. amylovorus ATCC 33620 accumulated lactic and acetic acids and some reducing sugars when starch was used as a carbon source without hydrogen production. Instead of starch as a carbon source, L. amylovorus ATCC 33620 produced lactic acid from algal biomass during fermentation and the acid-heat or freeze-thaw pretreatment of algal biomass accelerate the lactic acid fermentation.