• Title/Summary/Keyword: Fermentation conditions

Search Result 1,148, Processing Time 0.025 seconds

Quality of Alaska Pollack Theragra chalcogramma Sikhae after Fermentation for Different Times (변온숙성에 의한 명태(Theragra chalcogramma)식해의 품질유지)

  • Jeong, Eun-Jeong;Kim, Hun;Cha, Yong-Jun
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.48 no.3
    • /
    • pp.293-300
    • /
    • 2015
  • We sought to extend the shelf-life of Alaska pollack Theragra chalcogramma sikhae while maintaining quality. We compared the chemical, microbiological, and organoleptic characteristics of sikhae prepared under four different conditions. Control fish were fermented at ambient temperature ($21{\pm}2^{\circ}C$); other samples were stored at $5^{\circ}C$ after fermentation at ambient temperature for 36 h (A1), 60 h (A2), and 84 h (A3). Volatile basic nitrogen and amino-nitrogen levels, and total acidity increased with fermentation time in all samples, but the pH fell, attaining a relatively lower level in the control than in other samples. Over 90% of all viable cells were lactic acid-producing bacteria; this proportion did not change significantly during fermentation. In terms of texture, only hardness was affected by fermentation. The hardness of the control fell more rapidly than did that of the other samples. In terms of sensory evaluation (the acceptance test and quantitative descriptive analysis [QDA]), A2 was superior to other samples after fermentation for different times; A2 maintained limited salability (6 points on the relevant index) for up to 17 days of storage.

Bioethanol Production from Sugarcane Molasses by Fed-Batch Fermentation Systems Using Instant Dry Yeast

  • Agustin Krisna Wardani;Cinthya Putri Utami;Mochamad Bagus Hermanto;Aji Sutrisno;Fenty Nurtyastuti
    • Microbiology and Biotechnology Letters
    • /
    • v.51 no.2
    • /
    • pp.184-190
    • /
    • 2023
  • Bioethanol has recently attracted much attention as a sustainable and environmentally friendly alternative energy source. This study aimed to develop a potential process for bioethanol production by fed-batch fermentation using instant dry yeast. To obtain the highest cell growth, we studied the influence of the initial sugar concentrations and pH of sugarcane molasses in batch fermentation. The batch system employed three levels of sugar concentrations, viz. 10%, 15%, 20% (w/v), and two levels of pH, 5.0 and 5.5. The highest cell growth was achieved at 20% (w/v) and pH 5.5 of molasses. The fed-batch system was then performed using the best batch fermentation conditions, with a molasses concentration of 13% (w/v) which resulted in high ethanol concentration and fermentation efficiency of 15.96% and 89%, respectively.

Optimum Condition for Acetic Acid Fermentation Using Mume (Prunus mume Sieb. et Zucc) Fruits (매실을 이용한 초산 발효의 최적 조건)

  • 손상수;지원대;정현채
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.32 no.4
    • /
    • pp.544-548
    • /
    • 2003
  • To produce acetic acid from Mume (Prunus mume Sieb. et Zucc) fruits, fermentation conditions were optimized by a response surface methodology (RSM) using the fractional factorial design with 3 variables and 5 levels. The coefficient of determination ($R^2$) of response surface regression equation for acetic acid production was 0.9462. Optimum conditions for acetic acid production were involved with 8.76% of alcohol content 26.27$^{\circ}C$ of fermentation temperature and 8.42% of sugar content. Finally, predicted level of acetic acid production at these conditions was 3.23%.

Optimization Studies for the Production of Microbial Transglutaminase from a Newly Isolated Strain of Streptomyces sp.

  • Macedo, Juliana Alves;Sette, Lara Duraes;Sato, Helia Harumi
    • Food Science and Biotechnology
    • /
    • v.17 no.5
    • /
    • pp.904-911
    • /
    • 2008
  • Covalent cross-links between a number of proteins and peptides explain why transglutaminase may be widely used by food processing industries. The objective of this work was optimization of the fermentation process to produce transglutaminase from a new microbial source, the Streptomyces sp. P20. The strategy adopted to modify the usual literature media was: (1) fractional factorial design (FFD) to elucidate the key medium ingredients, (2) central composite design (CCD) to optimise the concentration of the key components. Optimization of the medium resulted in not only an 86% increase in microbial transglutaminase activity as compared to the media cited in the literature, but also a reduction in the production cost. Optimal fermentation conditions - namely temperature and agitation rate - were also studied, using CCD methodology. Usual conditions of $30^{\circ}C$ and 100 rpm were within the optimal area. All other parameters for enzyme production were experimentally proven to be optimum fermentation conditions.

Optmization of Culture Conditions and Nitrogen Sources for Production of Erythritol by Candida magnoliae. (Candida magnoliae에 의한 에리스리톨 생산을 위한 최적 배양환경과 질소원 선별)

  • 고은성;문관훈;한기철;유연우;서진호
    • Microbiology and Biotechnology Letters
    • /
    • v.28 no.6
    • /
    • pp.349-354
    • /
    • 2000
  • Culture conditions and nitrogen sources were optimized for production of erythritol, a natural sweetener, by Candida magnoliae M26. The optimal culture conditions were found to be culture temperature of $28^{\circ}C$, initial pH of 7, aeration of 1 vvm and agitation speed of 500 rpm in a 2.5 1 jar-fermentor. Glucose was chosen as the best carbon cource bsed on cell growth and erythritol productivity. Kight steep water(LSW) and corn steep liquor (CSL) which are by-products in starch processing from corn were tested as a nitrogen source substitute for yeast extract. The use of either LSW or CSL did not change the fermentation performance. The experimental results using LSW and CSL showed 1.5 times higher in cell growth and almost the same value in erythritol productivity com-pared with the control fermentation using yeast extract as a nitrogen source. These results suggested that either LSW of CSL could be used as a nitrogen source in a large-scale fermentation for erythritol production.

  • PDF

Effect of Environmental pH on End Products, Fermentation Balances and Bioenergetic As-pects of Lactobacillus bulg-aricus in a Glucose-limited “pH Stat” Continuous Culture.

  • Rhee, Sang-Ki;Pack, Moo-Young
    • Proceedings of the Korean Society for Applied Microbiology Conference
    • /
    • 1979.10a
    • /
    • pp.246.1-246
    • /
    • 1979
  • A glucose-limited “pH-stat” continuous culture study of Lactobacillus bulgaricus NLS-4 in an anaerobic condition showed the marked effects of environmental pH on end products, fermentation blances and bioenergetic aspects of the organism. Lactic acid was the major end product of fermentation with minor products, such as acetic acid, formic acid and ethanol throughout the pH range tested. In acidic conditions below pH 6.5, a typi-cal pattern of homofermentation was revealed whereas in alkaline conditions, the metabolic pattern was changed from homofermentation to heterofermentation and led to acquire much energy. This metabolic change was likely due to the pH-dependent lactate dehydrogenase activity. Molar growth yields (Yglc=35.5-44.4) and YATP, $18.5\pm2.5$ in average which was 80% higher than the value ever postulated seemed to be accounted for less requirement of maintenance energy of the organism in the culture conditions.

  • PDF

Biological Control and Plant-Growth Promotion by Bacillus Strains from Milk

  • Nautiyal Chandra Shekhar;Mehta Sangeeta;Singh Harikesh Bahadur
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.2
    • /
    • pp.184-192
    • /
    • 2006
  • Six-hundred bacterial strains from human milk and milk from Sahiwal cows, Holstein Friesian cows, and buffaloes were screened for their ability to suppress phytopathogenic fungi under in vitro conditions. A consortium of 3 strains, viz., Bacillus lentimorbus B-30486 (B-30486), B. subtilis B-30487 (B-30487), and B. lentimorbus B-30488 (B-30488), isolated from Sahiwal cow milk resulted in better biological control and plant-growth promotion than single-strain treatments. For commercial-scale production of a bioinoculant, the solid-state fermentation of sugarcane agro-industrial residues, i.e., molasses, press mud, and spent wash, using the consortium of B-30486, B-30487, and B-30488, resulted in a value-added product, useful for enhancing plant growth. The application of the consortium to sugarcane fields infested with Fusarium moniliforme and Colletotrichum falcatum resulted in a reduction of mortality and significantly higher (P=0.05) plant height, number of tillers, and cane girth when compared with the control. Furthermore, under field conditions, the treatment of sugarcane with the consortium resulted in significantly (P=0.05) greater plant growth compared with nonbacterized plants. Accordingly, this is the first report on the effective use of bacteria isolated from milk for biological control and enhancing plant growth under field conditions. Furthormore, a solid-state fermentation technology was developed that facilitates the economic utilization of agro-industrial residues for environmental conservation and improving plant and soil health.

β-Glucosidase Recovery from a Solid-State Fermentation System by Aspergillus niger (Aspergillus niger 의 고체상태 발효 시스템에서의 β-Glucosidase 회수)

  • Chandra, M. Subhosh;Reddy, B. Rajasekhar;Choi, Yong-Lark
    • Journal of Life Science
    • /
    • v.20 no.7
    • /
    • pp.999-1004
    • /
    • 2010
  • Investigations were carried out on a $\beta$-glucosidase produced by Aspergillus niger under solid-state fermentation conditions as a model of enzyme recovery from fermented wheat bran. The leaching efficiency of distilled water to recover the enzyme from the fermented bran was higher than acetate buffer, citrate buffer, citrate-phosphate buffer and 5% methanol; thus, the conditions were further optimized with distilled water as the extracting agent. After fermented bran was washed three times with distilled water for 1.5 hr each under shaking conditions at 1:5 solid to solvent ratio, a maximum recovery of 0.025 U/g of wheat bran was obtained.

The Influence of Fermentation Conditions on the Formation of Acid and Alcohol by Some Yeast Strains (몇가지 효모(酵母)의 산(酸) 및 알콜생성(生成)에 미치는 발효조건(醱酵條件)의 영향(影響))

  • Park, Yoon-joong;Sohn, Cheon-bae
    • Korean Journal of Agricultural Science
    • /
    • v.4 no.2
    • /
    • pp.173-177
    • /
    • 1977
  • These experiments were conducted to investigate the formation of organic acid and ethanol during fermentation by three yeast strains. One of these was industrial strain (No.7) from Japan, and the others were wild types (No. 47, No. 239) isolated from Takju-mash and Strawbery, respectively. Conditions of fermentation were varied by differing the supply of oxygen (air), and by using different fermentation media The results obtained were as follows: 1) All the yeast strains produced higher amount of total organic acid and ethanol under the conditions which were aerobic, i.e. the flasks were opened during fermentation, than in case of using the flasks with fermentation bung. 2) Organic acid and ethanol were produced rapidly in the mash medium than in the semi-synthetic medium, i.e. total amount of organic acid and ethanol was maximized in a short time in the mash medium. 3) On the mash medium, the highest amount of organic acid was obtained by the strain No. 239, the next by No. 7 and the lowest by No. 47. Ethanol was produced on this medium with decreacing order of No. 47, No. 239, and No. 7. 4) The strain No. 239 was proved to be a powerful organic acid producer, yielding higher amount of organic acid especially under the aerobic conditions. 5) Above results suggests that the strain No. 239 could be of useful in alcoholic drink industry, due to its powerful ethanol-producing characteristic accompaning with high yielding of organic acids.

  • PDF

Microbial production of coenzyme Q10

  • Suh, Jung-Woo
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 2006.11a
    • /
    • pp.127-130
    • /
    • 2006
  • Coenzyme Q10(CoQ10) is a biological quinine compound that is widely found in living organisms including yeast, plants, and animals. CoQ10 has two major physiological activities:(a)mitochondrial electron-transport activity and (b )antioxidant activity. Various clinical applications are also available: Parkinson's disease, Heart disease, diabetes. Because of its various application filed, the market size of CoQ10 is continuously expanding all over the world. A Japanese company, Nisshin Pharma Inc. is the first industrial producer of CoQ10(1974). CoQ10 can be produced by fermentation and chemical synthesis. In several companies, these two methods are used for the production of CoQ10:chemical synthesis - Yungjin, Daewoong, Nishin Parma; fermentation - Kaneka, Kyowa, Yungjin, etc. Researchs in microbial production of CoQ10 have several steps: screening of producing microorganisms, strain development, fermentation process, purification process, scale-up process, plant production. Several strategies are available for the strain development : Random mutation and screening, directed metabolic engineering. For the optimization of fermentation process, various conditions (nutrient, aeration, temperature, culture type, etc.) are considered. Purification is one of the most important step because the quality of final products entirely depends on its purity. The production cost will be reduced and the quality of the CoQ10 will be impoved by continuous researches in strain development, fermentation process, purification process.

  • PDF