• 제목/요약/키워드: Fermentation Parameters

검색결과 335건 처리시간 0.022초

Bacterial Inoculant Effects on Corn Silage Fermentation and Nutrient Composition

  • Jalc, D.;Laukova, Andrea;Pogany Simonova, M.;Varadyova, Z.;Homolka, P.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제22권7호
    • /
    • pp.977-983
    • /
    • 2009
  • The survival and effect of three new probiotic inoculants (Lactobacillus plantarum CCM 4000, L. fermentum LF2, and Enterococcus faecium CCM 4231) on the nutritive value and fermentation parameters of corn silage was studied under laboratory conditions. Whole corn plants (288.3 g/kg DM) were cut and ensiled at $21^{\circ}C$ for 105 days. The inoculants were applied at a concentration of $1.0{\times}10^{9}$ cfu/ml. Uninoculated silage was used as the control. The chopped corn was ensiled in 40 plastic jars (1 L) divided into four groups (4${\times}$10 per treatment). All corn silages had a low pH (below 3.55) and 83-85% of total silage acids comprised lactic acid after 105 days of ensiling. The probiotic inoculants in the corn silages affected corn silage characteristics in terms of significantly (p<0.05-0.001) higher pH, numerically lower crude protein content and ratio of lactic to acetic acid compared to control silage. However, the inoculants did not affect the concentration of total silage acids (acetic, propionic, lactic acids) as well as dry matter digestibility (IVDMD) of corn silages in vitro. In the corn silages with three probiotic inoculants, significantly (CCM 4231, CCM 4000) lower n-6/n-3 ratio of fatty acids was detected than in control silage. Significant decrease in the concentration of $C_{18:1}$, and significant increase in the concentration of $C_{18:2}$ and $C_{18:3}$ was mainly found in the corn silages inoculated with the strains E. faecium CCM 4231 and L. plantarum CCM 4000. At the end of ensiling, the inoculants were found at counts of less than 1.0 log10 cfu/g in corn silages.

Characterization of β-Glucosidase Produced by the White Rot Fungus Flammulina velutipes

  • Mallerman, Julieta;Papinutti, Leandro;Levin, Laura
    • Journal of Microbiology and Biotechnology
    • /
    • 제25권1호
    • /
    • pp.57-65
    • /
    • 2015
  • β-Glucosidase production by the white rot fungus Flammulina velutipes CFK 3111 was evaluated using different carbon and nitrogen sources under submerged fermentation. Maximal extracellular enzyme production was 1.6 U/ml, corresponding to a culture grown in sucrose 40 g/land asparagine 10 g/l. High production yield was also obtained with glucose 10 g/land asparagine 4 g/l medium (0.5 U/ml). Parameters affecting the enzyme activity were studied using p-nitrophenyl-β-D-glucopyranoside as the substrate. Optimal activity was found at 50℃ and pHs 5.0 to 6.0. Under these conditions, β-glucosidase retained 25% of its initial activity after 12 h of incubation and exhibited a half-life of 5 h. The addition of MgCl2, urea, and ethanol enhanced the β-glucosidase activity up to 47%, whereas FeCl2, CuSO4, Cd(NO3)2, and cetyltrimethylammonium bromide inflicted a strong inhibitory effect. Glucose and cellobiose also showed an inhibitory effect on the β-glucosidase activity in a concentration-dependent manner. The enzyme had an estimated molecular mass of 75 kDa. To the best of our knowledge, F. velutipes CFK 3111 β-glucosidase production is amongst the highest reported to date, in a basidiomycetous fungus.

Media Optimization for Laccase Production by Trichoderma harzianum ZF-2 Using Response Surface Methodology

  • Gao, Huiju;Chu, Xiang;Wang, Yanwen;Zhou, Fei;Zhao, Kai;Mu, Zhimei;Liu, Qingxin
    • Journal of Microbiology and Biotechnology
    • /
    • 제23권12호
    • /
    • pp.1757-1764
    • /
    • 2013
  • Trichoderma harzianum ZF-2 producing laccase was isolated from decaying samples from Shandong, China, and showed dye decolorization activities. The objective of this study was to optimize its culture conditions using a statistical analysis of its laccase production. The interactions between different fermentation parameters for laccase production were characterized using a Plackett-Burman design and the response surface methodology. The different media components were initially optimized using the conventional one-factor-at-a-time method and an orthogonal test design, and a Plackett-Burman experiment was then performed to evaluate the effects on laccase production. Wheat straw powder, soybean meal, and $CuSO_4$ were all found to have a significant influence on laccase production, and the optimal concentrations of these three factors were then sequentially investigated using the response surface methodology with a central composite design. The resulting optimal medium components for laccase production were determined as follows: wheat straw powder 7.63 g/l, soybean meal 23.07 g/l, $(NH_4)_2SO_4$ 1 g/l, $CuSO_4$ 0.51 g/l, Tween-20 1 g/l, $MgSO_4$ 1 g/l, and $KH_2PO_4$ 0.6 g/l. Using this optimized fermentation method, the yield of laccase was increased 59.68 times to 67.258 U/ml compared with the laccase production with an unoptimized medium. This is the first report on the statistical optimization of laccase production by Trichoderma harzianum ZF-2.

Relationship Linking Dietary Quercetin and Roughage to Concentrate Ratio in Feed Utilization, Ruminal Fermentation Traits and Immune Responses in Korean Indigenous Goats

  • Cho, Chi Hyun;Yang, Byung Mo;Park, No Seong;Lee, Hyung Suk;Song, Minho;Yi, Young Joo;Heo, Jung Min;Wickramasuriya, Samiru Sudharaka;Cho, Hyun Min;Lee, Soo Kee
    • 한국초지조사료학회지
    • /
    • 제37권1호
    • /
    • pp.10-18
    • /
    • 2017
  • A total of nine Korean indigenous goats were used in a cross-over arrangement to give nine replicates per treatment, and they were housed individually assigned to 1 of 9 dietary treatments. Nine treatments were 0, 500, and 1000 ppm of quercetin supplementation in diets by mixing roughage and concentrate with different ratios (RC ratio) of 3:7 (RC 30), 5:5 (RC 50) and 7:3 (RC 70). Nutrient utilizations of dry matter, crude fat and NDF were not affected by neither RC ratio nor dietary quercetin (p>0.05), but the rate of crude protein and ADF increased in animals in RC 70 group regardless of quercetin supplementation (p<0.05). In addition, higher RC ratio increased (p<0.05) N retention and N retention rate. Total VFA, acetic acid, propionic acid, iso-butyric acid, butyric acid, iso-valeric acid and valeric acid contents were not affected (p>0.05) by dietary quercetin. Meanwhile, lower total cholesterol level exhibited in animals in RC 70 group compared to RC 30 or 50 groups, unrelated to dietary quercetin (p<0.05), however other plasma parameters were not influenced (p>0.05) by RC ratio and dietary quercetin. Our results indicated that both RC ratio and dietary quercetin may not directly affect the production indices and immune responses in Korean indigenous goat.

Statistical Optimization for Monacolin K and Yellow Pigment Production and Citrinin Reduction by Monascus purpureus in Solid-State Fermentation

  • Jirasatid, Sani;Nopharatana, Montira;Kitsubun, Panit;Vichitsoonthonkul, Taweerat;Tongta, Anan
    • Journal of Microbiology and Biotechnology
    • /
    • 제23권3호
    • /
    • pp.364-374
    • /
    • 2013
  • Monacolin K and yellow pigment, produced by Monascus sp., have each been proven to be beneficial compounds as antihypercholesterolemic and anti-inflammation agents, respectively. However, citrinin, a human toxic substance, was also synthesized in this fungus. In this research, solidstate fermentation of M. purpureus TISTR 3541 was optimized by statistical methodology to obtain a high production of monacolin K and yellow pigment along with a low level of citrinin. Fractional factorial design was applied in this study to identify the significant factors. Among the 13 variables, five parameters (i.e., glycerol, methionine, sodium nitrate, cultivation time, and temperature) influencing monacolin K, yellow pigment, and citrinin production were identified. A central composite design was further employed to investigate the optimum level of these five factors. The maximum production of monacolin K and yellow pigment of 5,900 mg/kg and 1,700 units/g, respectively, and the minimum citrinin concentration of 0.26 mg/kg were achieved in the medium containing 2% glycerol, 0.14% methionine, and 0.01% sodium nitrate at $25^{\circ}C$ for 16 days of cultivation. The yields of monacolin K and yellow pigment were about 3 and 1.5 times higher than the basal medium, respectively, whereas citrinin was dramatically reduced by 36 times.

Controllable Biogenic Synthesis of Intracellular Silver/Silver Chloride Nanoparticles by Meyerozyma guilliermondii KX008616

  • Alamri, Saad A.M.;Hashem, Mohamed;Nafady, Nivien A.;Sayed, Mahmoud A.;Alshehri, Ali M.;El-Shaboury, Gamal A.
    • Journal of Microbiology and Biotechnology
    • /
    • 제28권6호
    • /
    • pp.917-930
    • /
    • 2018
  • Intracellular synthesis of silver/silver chloride nanoparticles (Ag/AgCl-NPs) using Meyerozyma guilliermondii KX008616 is reported under aerobic and anaerobic conditions for the first time. The biogenic synthesis of Ag-NP types has been proposed as an easy and cost-effective alternative for various biomedical applications. The interaction of nanoparticles with ethanol production was mentioned. The purified biogenic Ag/AgCl-nanoparticles were characterized by different spectroscopic and microscopic approaches. The purified nanoparticles exhibited a surface plasmon resonance band at 419 and 415 nm, confirming the formation of Ag/AgCl-NPs under aerobic and anaerobic conditions, respectively. The planes of the cubic crystalline phase of the Ag/AgCl-NPs were confirmed by X-ray diffraction. Fourier-transform infrared spectra showed the interactions between the yeast cell constituents and silver ions to form the biogenic Ag/AgCl-NPs. The intracellular Ag/AgCl-NPs synthesized under aerobic condition were homogenous and spherical in shape, with an approximate particle size of 2.5-30nm as denoted by the transmission electron microscopy (TEM). The reaction mixture was optimized by varying reaction parameters, including temperature and pH. Analysis of ultrathin sections of yeast cells by TEM indicated that the biogenic nanoparticles were formed as clusters, known as nanoaggregates, in the cytoplasm or in the inner and outer regions of the cell wall. The study recommends using the biomass of yeast that is used in industrial or fermentation purposes to produce Ag/AgCl-NPs as associated by-products to maximize benefit and to reduce the production cost.

병원성 선충 Heterorhabditis bacteriophora에서 분리된 공생 박테리아 Photorhabdus luminescens의 생장조건 (Growth Optimization of Photorhabdus luminescens Isolated from Entomopathogenic Nematode Heterorhabditis bacteriophora)

  • Yoo, Sun Kyun;Randy Gaugler;Christopher W. Brey
    • 한국미생물·생명공학회지
    • /
    • 제29권2호
    • /
    • pp.104-109
    • /
    • 2001
  • 공생 박테리아 Photorhabdus sp. strain TF 균체량이 증가함에 따라서 병원성 선충 Heterorhabditis bacteriophora의 Infective Juveniles의 생산이 증가되었다. 이 공생 박테리아의 성장 최적 조건은 각각 배양 온도 3$0^{\circ}C$ 그리고 초기 배지 pH 5.5부터 7.3 사이에서 얻어졌다. 통기 상태에서 박테리아 균체의 생산과 성장이 촉진됨이 밝혀졌다. Photorhabdus sp. strain TF 박테리아의 성장 중 생산된 색소와 배양액의 pH의 변화는 박테리아의 성장 정도 나타내어 액체배양에서 병원성 선충 Heterorhabditis bacteriophora의 접종시기로 표시로서 이용할 수 있을 것이다.

  • PDF

리파마이신B 발효생산의 최대화를 위한 pH변화의 최적화 (Optimal pH Profile in Rifamycin B Fermentation)

  • 이재관;최차용;성백린;한문희
    • 한국미생물·생명공학회지
    • /
    • 제9권4호
    • /
    • pp.225-230
    • /
    • 1981
  • The kinetic study of rifamycin B production in batch culture of Nocardia mediterranei was undertaken in part of our endeavor to optimize the fermentation condition. The growth parameters such as $\mu$$_{m}$ and Ks values for nitrogen source were evaluated by employing Monod equation. From the experiments, $\mu$$_{m}$ and Ks were 0.15hr$^{-1}$ and 8.35g/1, respectively. The growth kinetics in batch culture was found successfully interpreted by logistic law, i.e., the initial specific growth rate and the maximum cell mass concentration were determined as function of pH and both found to have maxima. For the production of rifamycin B, a non-growth associated production kinetics was employed and the specific productivity as a function of pH was found to have two maximum points. The yield coefficient and the specific productivity were calculated as mean values in production phase. Utilizing these experimental data as a function of pH, the optimal condition for the rifamycin B production was discussed with regad to the pH effect on the cell growth and production of the antibiotic. As a result, growth phase at pH 6.5 and production phase at pH 7.0 were found to be recommended.ded.

  • PDF

Effect of degraded flaxseed meals on the growth performance, nutrient digestibility, and health status of broilers

  • Xiaoyu Ji;Xiangyu Liu;Jianping Wang;Ning Liu
    • Animal Bioscience
    • /
    • 제37권7호
    • /
    • pp.1255-1262
    • /
    • 2024
  • Objective: The present study evaluated the effect of flaxseed meal degraded by a protease, Lactobacillus plantarum, or both on the growth performance, nutrient digestibility, and health status of broilers. Methods: There were four diets containing flaxseed meals in its non-degraded form (control, CON), degraded with 3,000 U/kg of protease (enzymatic, ELM), 1.0×109 CFU/kg of Lactobacillus plantarum (fermented, FLM), or both (dual-degraded, DLM). Each form of flaxseed meals was added at 15% of diet. A total of 480 yellow-feathered broilers at 22 d of age were distributed into 4 groups with 6 replicates of 20 chickens each. The feeding trial lasted for 42 d. Growth performance, apparent fecal digestibility (dry matter, energy, crude protein, and ash), and serum immunoglobins and antioxidases were determined at 42 and 63 d of age. Results: Results showed that ELM, FLM, and DLM increased (p<0.001) the contents of peptides and decreased (p<0.001) cyanogenic glycosides, compared to CON. The diets with degraded flaxseed meals increased (p<0.05) feed intake and body weight gain throughout the feeding trial, and the digestibility of energy, crude protein, and ash at the end of feeding trial. Furthermore, all degraded groups enhanced (p<0.05) broiler health status by increasing serum immunoglobulins A and G. Additinally, DLM showed more pronounced effects (p<0.05) on these parameters than ELM or FLM. Conclusion: Flaxseed meals degraded by enzymolysis, fermentation, or both had improved nutrition and application in broilers.

Effects of Tropical High Tannin Non Legume and Low Tannin Legume Browse Mixtures on Fermentation Parameters and Methanogenesis Using Gas Production Technique

  • Seresinhe, Thakshala;Madushika, S.A.C.;Seresinhe, Y.;La, P.K.;Orskov, E.R.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제25권10호
    • /
    • pp.1404-1410
    • /
    • 2012
  • In vitro experiments were conducted to evaluate the suitability of several mixtures of high tanniniferous non legumes with low tanniniferous legumes on in vitro gas production (IVGP), dry matter degradation, Ammonia-N, methane production and microbial population. Eight treatments were examined in a randomized complete block design using four non-legumes and two legumes (Carallia integerrima${\times}$Leucaena leucocephala (LL) (Trt 1), C. integerrima${\times}$Gliricidia sepium (GS) (Trt 2), Aporosa lindeliyana${\times}$LL (Trt 3), A. lindeliyana${\times}$GS (Trt 4), Ceiba perntandra${\times}$LL (Trt 5), C. perntandra${\times}$GS (Trt 6), Artocarpus heterophyllus${\times}$LL (Trt 7), A. heterophyllus${\times}$GS (Trt 8). The condensed tannin (CT) content of non legumes ranged from 6.2% (Carallia integerrima) to 4.9% (Ceiba perntandra) while the CT of legumes were 1.58% (Leucaena leucocephala) and 0.78% (Gliricidia sepium). Forage mixtures contained more than 14% of crude protein (CP) while the CT content ranged from 2.8% to 4.0% respectively. Differences (p<0.05) were observed in in vitro gas production (IGVP) within treatments over a 48 h period dominated by C. perntandra${\times}$G. sepium (Trt 6). The net gas production (p<0.05) was also high with Trt6 followed by A. heterophyllus${\times}$L. leucocephala (Trt 7) and A. heterophyllus${\times}$G. sepium (Trt 8). Highest (p>0.05) NH3-N (ml/200 mg DM) production was observed with the A. heterophyllus${\times}$G. sepium (Trt 8) mixture which may be attributed with it's highest CP content. The correlation between IVGP and CT was 0.675 while IVGP and CP was 0.610. In vitro dry matter degradation (IVDMD) was highest in Trt 8 as well. Methane production ranged from 2.57 to 4.79 (ml/200 mg DM) to be synonimous with IVGP. A higher bacteria population (p<0.05) was found in C. perntandra${\times}$G. sepium (Trt 6) followed by Artocarpus heterophyllus+G. sepium (Trt 8) and the same trend was observed with the protozoa population as well. The results show that supplementing high tannin non leguminous forages by incremental substitution of legume forage increased gas production parameters, NH3-N, IVDMD and microbial population in the fermentation liquid. Methane production was not significantly affected by the presence of CT or different levels of CP in forage mixtures. Among non legumes, Ceiba perntandra and Artocarpus heterophyllus performed better in mixture with L. leucocephala and G. sepium.