• Title/Summary/Keyword: Fenton Test

Search Result 40, Processing Time 0.009 seconds

Elctrokinetic-Fenton 기법 적용시 토질조건과 오염원의 종류에 따른 과산화수소의 주입특성

  • 김정환;김병일;한상재;김수삼
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2002.04a
    • /
    • pp.30-33
    • /
    • 2002
  • In this study, feasibility of using hydrogen peroxide as a chemical oxidant for in-situ treatment by EK-Fenton technology were investigated. Kaolinite, kaolinite/sand mixture and illitic soil spiked by phenol and phenanathrene were used and variation of electrochemical characteristics were examined by EK-Fenton test. For kaolinite that having low buffer capacity, hydrogen peroxide was injected effectively from anode reservoir. However illitic soil that having relatively higher buffer capacity had low hydrogen peroxide introducing efficiency. The test results showed that Hydrogen ions generated by current increased during the treatment decreased under pH 3 in the most of kaolinite specimen. Therefore, stabilized hydrogen oxide was injected more effectively in the kaolinite specimen. This study suggests that efficiency of hydrogen peroxide injection by EK-Fenton thechnoloty is dependent of variation of pH in the soil

  • PDF

The remediation of contaminated kaolinite by phenanthrene using Electrokinetic-Fenton process (Electrokinetic-Fenton 공정에 의한 Phenanthrene으로 오염된 카올린의 정화)

  • 김정환;김익현;한상재;김수삼
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.10a
    • /
    • pp.593-596
    • /
    • 2002
  • This study examined the feasibility of Electrokinetic-Fenton process for remediation of contaminated kaolinite by phenanthrene. The test using 7% H$_2$O$_2$as anode purging solution indicated the higher electrical current and electroosmotic flow than the test using 3.5% H$_2$O$_2$. And distribution in the soil of H$_2$O$_2$concentration showed the higher value of the former than the latter. Furthermore, the test using 7% H$_2$O$_2$and 0.01N H$_2$SO$_4$was the highest electrical current and electroosmotic flow and H$_2$O$_2$was effectively introduced to the cathode region. As it turned out, the treatment effect of phenanthrene was improved in compare with the other tests.

  • PDF

A Study on the Dye-Wastewater Treatment by Fenton and Photo-Fenton Oxidation Process (Fenton 및 Photo-Fenton 산화공정을 이용한 염색 폐수의 처리에 관한 연구)

  • 조일형;고영림;이소진;이홍근;조경덕
    • Journal of Environmental Health Sciences
    • /
    • v.26 no.4
    • /
    • pp.29-37
    • /
    • 2000
  • Fenton’s oxidation process is one of the most commonly applied processes to the wastewater which cannot be treated by conventional biological treatment processes. However, it is necessary to minimize the cost of Fenton’s oxidation treatment by modifying the treatment processes or other means of chemical treatment. So, as a method for the chemical oxidation of biorefractory or nonbiodegradable organic pollutants, the Photo-Fenton-Reaction which utilizes iron(11)salt. $H_2O$$_2$ and UV-light simultaneously has been proprosed. Therfore, the purpose of this study is to test a removal efficiency of dye-wastewater and treatment cost with Fenton’s and Photo-Fenton’s oxidation process. The Fe(11)/$H_2O$$_2$ reagent is referred to as the fenton’s reagent. which produces hydroxy radicals by the interaction of Fe(11) with $H_2O$$_2$. In this exoeriment, the main results are as followed; 1. The Fenton oxidation was most efficient in the pH range of 3-5. The optimal condition for initial reaction pH was 3.5 for the high CO $D_{Cr}$ & TOC-removal efficiency. 2. The removal efficiency of TOC and CO $D_{Cr}$ increased up to the molar ration between ferrate and hydrogen peroxide 0.2:1, but above that ratio removal efficiency hardly increased. 3. The highest removal efficiency of TOC and CO $D_{Cr}$ were showed when the mole ration of ferrate to hydrogen peroxide was 0.2:3.4. 4. Without pretreatment process, photo-fenton oxidation which was not absorbed UV light was not different to fenton oxidation. 5. And Fenton oxidtion with pretreatment process was similar to Fenton oxidation in the absence of coagulation, the proper dosage of F $e^{2+}$: $H_2O$$_2$ was 0.2:1 for the optimal removal efficiency of TOC or CO $D_{Cr}$ .6. Also, TOC & CO $D_{Cr}$ removal efficiency in the photo-fenton oxidation with pretreatment was increased when UV light intensity enhanced.7. Optimum light intensity in the range from 0 to 1200 W/$m^2$ showed that UV-intensity with 1200W/$m^2$ was the optimum condition, when F $e_{2+}$:$H_2O$$_2$ ratio for the highest decomposition was 0.2:2.5.EX>$_2$ ratio for the highest decomposition was 0.2:2.5.

  • PDF

Applicable Feasibility of Fenton Oxidation and Zeolite Ion Exchange Processes for Removal of Non-Biodegradable Matters and Ammonia in Livestock Wastewater (축산폐수 중의 난분해성 물질 및 암모니아 제거를 위한 Fenton 산화와 Zeolite 이온교환 공정의 적용 가능성)

  • Cho, Chang-Woo;Kim, Byoung-Young;Chae, Soo-Choen;Chung, Paul-Gene
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.5
    • /
    • pp.600-606
    • /
    • 2007
  • Livestock wastewater containing concentrated organic matters and nutrients has been known as one of the major pollutants. It is difficult to apply the conventional activated sludge process to treat livestock wastewater because of high Non-biodegradable (NBD) matter and ammonia. The objectives of this study are to remove NBD matters including aromatic compounds and ammonia in livestock wastewater using Coagulation-Fenton oxidation-Zeolite (CFZ) processes and ascertain applicable feasibility in the field through pilot plant experiment. NBD matters and color remained in the treated water were removed over 92% by Fenton oxidation as the second treatment process. Ammonia was removed by over 99.5% in the zeolite ion exchange process as the last treatment method. From $UV_{254}$, $E_2/E_3$ ratio and GC/MS analyses of treated water at each process, the aromatic compound was converted to aliphatic and aromaticity was decreased. In pilot scale test, organics and ammonia removal efficiencies were not much different from the result of lab-scale test at various operation conditions. Furthermore, reaction time and dosage of Fenton reagent in pilot scale experiment reduced by 40 min and 50% rather than in lab-scale test. $BOD_5$, $COD_{Mn}$, SS, T-N and T-P of treated water in the pilot-scale experiment also met the effluent standards.

Electrokinetic-Fenton 공정에 의한 phenonthrene으로 오염된 토양의 정화 시에 보조 첨가제의 종류에 따른 영향

  • 김정환;양지원;김수삼
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.09a
    • /
    • pp.76-79
    • /
    • 2004
  • This research was carried out to evaluate role of supplementary reagents, such as phosphate and SDS, to remove hydrophobic organic contaminant from soils during the EK-Fenton process. The $H_2O$$_2$ stability improved due to the role as stabilizer of phosphate and SDS during the EK-Fenton process. Furthermore, although pH in region near cathode was 8.2 after test, $H_2O$$_2$ stability improved due to transportation of SDS in the region near cathode. Therefore, in tests using phosphate and SDS as supplementary reagent, the efficiency of phenanthrene treatment improved through the EK-Fenton process using longer reaction time.

  • PDF

A study on the dye wastewater treatment by Fenton oxidation process (Fenton 산화공법을 적용한 염색폐수처리 연구)

  • Ahn, June-Shu;Park, Tae-Sool;Cho, Jung-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.9
    • /
    • pp.4274-4282
    • /
    • 2011
  • In this study, Fenton reaction was studied for the possibility of applying as advanced treatment and its optimal condition for the removal of refractory organics from the dye wastewater. Fenton reaction was applied to remove refractory organics after the bio-treatment (secondary treatment) inside test laboratory and on-site pilot plant. Wastewater from the secondary treatment was used and its $COD_{Mn}$ was measured as 30~50mg/L. After the Fenton reaction, the optimal condition was found as pH 3~3.5, reaction time 2~2.5hr, chemical input ratio of ($FeCl_2$(33%)/$H_2O_2$(35%)) was 3 : 1. When chemical input ratio of ($FeCl_2$(33%)/$H_2O_2$(35%)) was at its optimal, amount of sludge volume ($SV_{2hr}$) was 21~28%. With pilot plant test, removal rate was heavily influenced by the hydraulic retention time(HRT), and optimum value of HRT was 2.0 hr. When pilot plant($2m^3/d$) was placed on-site and operated continuously, it showed steady and fairly good treatment of COD where COD removal rate was 60~70%, treated water showed below 20mg/L.

Variation of Hydrogen Peroxide Concentration during Fenton Reaction for Test the Membrane Durability of PEMFC (PEMFC 고분자막 내구 평가를 위한 Fenton 반응에서 과산화수소 농도 변화에 관한 연구)

  • Oh, Sohyung;Kim, Jeongjae;Lee, Daewoong;Park, Kwonpil
    • Korean Chemical Engineering Research
    • /
    • v.56 no.3
    • /
    • pp.315-319
    • /
    • 2018
  • Fenton reaction is widely used as a out of cell method for evaluating the membrane electrochemical durability of Proton Exchange Fuel Cell (PEMFC). In this study, we investigated the factors affecting the Fenton reaction. In order to estimate the degree of the reaction, it is necessary to analyze the radicals as a product in the Fenton reaction. However, since the radicals are difficult to analyze, the degree of the reaction was measured by analyzing the concentration of hydrogen peroxide. The activation energy was calculated from the rate of hydrogen peroxide change with temperature. The activation energy was 24.9 kJ/mol at 180 min. The Fenton reaction rate was affected by the iron ion concentration. At $80^{\circ}C$, 200 rpm, and $Fe^{2+}$ 80 ppm, the concentration of hydrogen peroxide was decreased more than 20% even for 1 hour, which shows that frequent solution replacement increases the membrane degradation rate.

Study on the Fenton Reaction Condition for Evaluation of Chemical Durability of PEMFC Membrane (PEMFC 고분자막의 화학적 내구성 평가를 위한 Fenton 반응 조건에 관한 연구)

  • Oh, Sohyeong;Park, Jisang;Jung, Sunggi;Jeong, Jihong;Park, Kwonpil
    • Korean Chemical Engineering Research
    • /
    • v.59 no.1
    • /
    • pp.49-53
    • /
    • 2021
  • The Fenton reaction is often used to evaluate the chemical durability of polymer membranes of Proton Exchange Membrane Fuel Cells (PEMFC). However, due to the violent reaction between hydrogen peroxide and iron ions, it is difficult to compare experimental data because of low reproducibility. In this study, we tried to find the reaction conditions to improve the reproducibility of the durability test of the membrane by the Fenton reaction. The hydrogen peroxide concentration was fixed at 30%, the iron ion concentration, temperature, stirring speed, and sample size were varied, and the fluorine ion concentration of the Nafion polymer membrane deteriorated by radicals was measured. When the iron ion concentration was increased or the membrane sample size was increased, and the reaction temperature was increased to 80 ℃, the experimental deviation increased, so an iron ion concentration of 10 ppm, a temperature of 70 ℃, and a sample size of 0.5 ㎠ were suitable.

A Study on the Efficient Applicability of Fenton Oxidation for the Wastewater Containing Non-biodegradable Organics (생물난분해성 유기물질 함유 폐수처리를 위한 Fenton 산화법의 효율적 적용방안에 관한 연구)

  • Jun, Se Jin;Kim, Mi Jeong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.14 no.1
    • /
    • pp.76-83
    • /
    • 2000
  • This research is about wastewater containing non-biodegradable TDI(Toluene Diisocyanate) that is treated by the activated carbon adsorption method. In the case of the Fenton oxidation process being applied to the existing process, optimal pH, reaction time, chemical dosing amount, removal rate, and cost were investigated. A pilot plant test was applied after finding optimal conditions with lab experiments. The optimal conditions were pH 3~5(COD removal rate 84~88%) and reaction time 30min~1hr. In higher $H_2O_2$ dosing amount, COD removal rate was a little higher. But there was little difference in the removal rate according to $FeSO_4{\cdot}7H_2O$ dosing amount. Treatment cost was economical in the case of the Fenton oxidation process being operated earlier than activated carbon adsorption system. But chemical dosing point, chemical mixing effect, chemical dosing amount, removal rate, and the cost of facility and others must be considered in practical process.

  • PDF

Fenton난s Reagent Oxidation of Refractory Organics in Petrochemical Plant Effluent (석유화학공장 방류수내 난분해성 유기물의 Fenton 산화처리)

  • Lee, Kyu-Hoon;Jung, Dae-Young;Park, Tae-Joo
    • Journal of Environmental Science International
    • /
    • v.5 no.1
    • /
    • pp.51-59
    • /
    • 1996
  • The purpose of this study was to evaluate the partial oxidation of the biological treatment plant effluents using Fenton's reagent as a pretreatment step prior to a tertiary biological oxidation of these effluents. Fenton's reagent was evaluated as a pretreatment process for inhibitory or refractory organics. Based on the Fenton oxidation system, the petrochemical wastewater treatment plant effluent was shown to have significant improvement in toxicity after oxidation with hydrogen peroxide. For example, at ranee of 42 ∼ 184 mg/L COD of petrochemical plant effluents, the COD removal efficiencies were from 38.2% to 60.1% after reaction with hydrogen peroxide 200 mg/L and Fe2+ 100 mg/L and reaction time was 30 minutes. The total TOC reduction were about 15.8∼22.4% with same test condition and difference between the overall removal rate and BOD/COD ratio after Fenton's oxidation estabilished in the biodegradation and otherwise meets the discharge standard or reuse for cooling tower make-up water.

  • PDF