• Title/Summary/Keyword: Femur and Tibial Components

Search Result 2, Processing Time 0.016 seconds

The Stress Concentration Caused by Pin-hole in Femur after Computer-navigated Total Knee Arthroplasty: A Finite Element Analysis (컴퓨터 네비게이션을 이용한 슬관절 전치환술에서 핀 홀에 의한 응력 집중: 유한요소해석)

  • Park, Hyung-Kyun;Kim, Yoon-Hyuk;Park, Won-Man;Kim, Kyung-Soo
    • Journal of Biomedical Engineering Research
    • /
    • v.29 no.6
    • /
    • pp.451-456
    • /
    • 2008
  • Total knee arthroplasty(TKA) using computer-assisted navigation has been increased in order to improve the accuracy of femoral and tibial components implantation. Recently, a few clinical studies have reported on the femoral stress fracture after TKA using computer-assisted navigation. The purpose of this study is to investigate the stress concentration around the femoral pin-hole for different pin-hole diameter, the modes of pin penetration by finite element analysis to understand the effects of pin-hole parameters on femoral stress fracture risk. A three-dimensional finite element model of a male femur was reconstructed from 1 mm thick computed tomography(CT) images. The bone was rigidly fixed to a 25 mm above the distal end and 1500 N of axial compressive force and 12 Nm of axial torsion were applied at the femoral head. For all cases, transcortical pin penetration mode showed the highest stress fracture risk and unicortical pin penetration mode showed the lowest stress concentration. Pin-hole diameter increased the stress concentration, but pin number did not increase the stress dramatically. The results of this study provided a biomechanical guideline for pin-hole fracture risk of the computer navigated TKA.

Current Research on the Stress Analysis of Artificial Knee Joint (인공 슬관절의 응력 해석에 관한 연구)

  • Lee Jae-Hwan
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2005.04a
    • /
    • pp.240-245
    • /
    • 2005
  • In this paper, the current research for the biomechanics of artificial knee joints including experiments and stress analysis is surveyed and Introduced. The knee joint is the most large and the motion is very complicated, so the design of artificial joint is difficult and most research Is being done abroad. Up to date, most products are foreign products and Imported here and the gap between here and advanced countries of the technical and capability for the design and manufacturing is too deep to follow. So, the contents of papers in this area including the most excellent results are introduced. And the preliminary research on the contact stress analysis of the joints is present.

  • PDF