• Title/Summary/Keyword: Femtosecond laser machining

Search Result 37, Processing Time 0.023 seconds

Fabrication of Internal Gratings in PDMS Using a Femtosecond Laser

  • Park, Jung-Kyu;Cho, Sung-Hak;Yu, Jae-Yong;Kim, Jae-Gu;Sugioka, Koji;Hong, Jong-Wook;Heo, Won-Ha;Hwang, Kyung-Hyun
    • Laser Solutions
    • /
    • v.14 no.1
    • /
    • pp.1-5
    • /
    • 2011
  • Photo-induced gratings m flexible PDMS (polydimethly siloxane) film are directly written by a high-intensity femtosecond (130fs) Ti: Sapphire laser (${\lambda}_p$ = 800nm). The refractive index modifications with $4\;{\mu}m$ diameters were photo-induced after the femtosecond irradiation with peak intensities of more than $1{\times}10^{11}W/cm^2$. The graded refractive index profile was fabricated to be a symmetric around the center of the point at which femtosecond laser by controlling both laser power and focused depth. The change on refractive index in the laser-modified regions was estimated to be approximately $10^{-3}$. The internal flexible symmetric diffraction gratings in PDMS film was successfully fabricated using a femtosecond laser.

  • PDF

Development of Vibration Assisted Hybrid Femtosecond Laser Ultra-precision Machining System and Cu-Zn alloy Application (진동자를 이용한 하이브리드 극초단 펄스 레이저 초정밀가공시스템 개발 및 Cu-Zn합금 응용)

  • Choi, Won-Suk;Yoon, Ji-Wook;Cho, Sung-Hak;Kang, Myung-Chang
    • Journal of Powder Materials
    • /
    • v.20 no.4
    • /
    • pp.308-312
    • /
    • 2013
  • In this paper, we describe experiment results using a vibration assisted hybrid femtosecond laser (${\lambda}$:795 nm) ultra-precision machining system. The hybrid system we have developed is possible that optical focal point of the femtosecond laser constantly and frequently within the range of PZT(piezoactuator) vibrator working distance. Using the hybrid system, We have experimented on brass and studied about differences of result of hole aspect ratio compare to general experiment setup of femtosecond laser system. Aspect ratio of a micro hole on brass is increased as 54% with 100 Hz vibration frequency and surface roughness of the side wall also improved compare to non-vibration.

Experimental study of filamentation using ultra fast pulse laser in transparent material (극초단 펄스 레이저를 사용한 유리 내부의 필라멘테이션에 대한 실험적 연구)

  • Choi, Won-Suk;Yoon, Ji-Wook;Kim, Joohan;Choi, Jiyeon;Chang, Won-Seok;Kim, Jae-Goo;Choi, Doo-Sun;Whang, Kyoung Hyun;Cho, Sung-Hak
    • Laser Solutions
    • /
    • v.16 no.1
    • /
    • pp.5-9
    • /
    • 2013
  • We have successfully formed filament inside of a transparent soda-lime glass using a Ti:sapphire based femtosecond laser. To make filament form, keeping the laser intensity higher than critical intensity is essential. Also each of the machining parameters plays an important role for the formation of filament. In this paper, we study what parameter can possibly influence for formation of filament, and we introduce an application using filamentation by femtosecond laser for transparent material.

  • PDF

Structural Analysis of a Cavitary Region Created by Femtosecond Laser Process

  • Fujii, Takaaki;Goya, Kenji;Watanabe, Kazuhiro
    • Journal of Power System Engineering
    • /
    • v.19 no.3
    • /
    • pp.5-10
    • /
    • 2015
  • Femtosecond laser machining has been applied for creating a sensor function in silica glass optical fibers. Femtosecond laser pulses make it possible to fabricate micro structures in processed regions of a very thin glass fiber line because femtosecond laser pulses can extremely minimize thermal effects. With the laser machining to optical fiber using a single shot of 210-fs laser at a wavelength of 800 nm, it was observed that a processed region surrounded a thin layer which seemed to be a hollow cavity monitored by scanning electron microscopy (SEM). This study aims at a theoretical investigation for the processed region by using a numerical analysis in order to embed sensing function to optical fibers. Numerical methods based finite element method (FEM) has been used for an optical waveguide modeling. This report suggests two types modeling and describes a comparative study on optical losses obtained by the experiment and the numerical analysis.

Machining Technology of Micro Combustion Nozzle Using a Femtosecond Laser (펨토초 레이저를 이용한 미세 연소노즐 가공 기술)

  • Kim, Kyung-Chan;Kim, Kyung-Ho;Ha, Ji-Soo;Sohn, Ik-Bu;Choi, Hae-Woon;Kim, Tae-Kwon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.11
    • /
    • pp.24-29
    • /
    • 2010
  • The shape of combustion nozzles varies from large diameter to small diameter ones. In the case of small nozzle, nozzle exit can be easily winkled or damaged in machining process. Femtosecond laser is a micro machining technology that is able to drill a small nozzle without damaging the nozzle exit. In this experiment, a small nozzle of combustion was fabricated by using a femtosecond laser. The fabricated nozzle of combustion provided a very small nozzle diameter with clean nozzle exit without wrinkling or collateral damage.

Selective Removal of Thin Film on Glass Using Femtosecond Laser (펨토초 레이저 응용 선택적 어블레이션 연구)

  • Yu, J.Y.;Cho, S.H.;Park, J.K.;Yoon, J.W.;Whang, K.R.;Sugioka, K.;Hong, J.W.;Heo, W.R.;Boehme, D.;Park, J.H.;Zander, S.
    • Laser Solutions
    • /
    • v.14 no.2
    • /
    • pp.17-23
    • /
    • 2011
  • Active thin films are ubiquitous in the manufacture of all forms of flat panel display (FPD). One of the most widely employed thin films is indium tin oxide (ITO) and metal films used electrically conductive materials in display industries. ITO is widely used for fabrication of LCD, OLED device, and many kinds of optical applications because of transparency in visible range and its high conductivity and metal films are also widely employed as electrodes in various electric and display industries. It is important that removing specific area of layer, such as ITO or metal film on substrate, to fabricate and repair electrode in display industries. In this work, we demonstrate efficient selective ablation process to ITO and aluminum film on glass using a femtosecond laser (${\lambda}p=1025nm$) respectively. The femtosecond laser with wavelength of 1025nm, pulse duration of 400fs, and the repetition rate of 100kHz was used for selectively removing ITO and Al on glass in the air. We can successfully remove the ITO and Al films with various pulse energies using a femtosecond laser.

  • PDF

Study of ablation depth control of ITO thin film using a beam shaped femtosecond laser (빔 쉐이핑을 이용한 펨토초 레이저 ITO 박막 가공 깊이 제어에 대한 연구)

  • Kim, Hoon-Young;Yoon, Ji-Wook;Choi, Won-Seok;Stolberg, Klaus;Whang, Kyoung-Hyun;Cho, Sung-Hak
    • Laser Solutions
    • /
    • v.17 no.1
    • /
    • pp.1-6
    • /
    • 2014
  • Indium tin oxide (ITO) is an important transparent conducting oxide (TCO). ITO films have been widely used as transparent electrodes in optoelectronic devices such as organic light-emitting devices (OLED) because of their high electrical conductivity and high transmission in the visible wavelength. Finding ways to control ITO micromachining depth is important role in the fabrication and assembly of display field. This study presented the depth control of ITO patterns on glass substrate using a femtosecond laser and slit. In the proposed approach, a gaussian beam was transformed into a quasi-flat top beam by slit. In addition, pattern of square type shaped by slit were fabricated on the surfaces of ITO films using femtosecond laser pulse irradiation, under 1030nm, single pulse. Using femtosecond laser and slit, we selectively controlled forming depth and removed the ITO thin films with thickness 145nm on glass substrates. In particular, we studied the effect of pulse number on the ablation of ITO. Clean removal of the ITO layer was observed when the 6 pulse number at $2.8TW/cm^2$. Furthermore, the morphologies and fabricated depth were characterized using a optical microscope, atomic force microscope (AFM), and energy dispersive X-ray spectroscopy (EDS).

  • PDF

Internal modification in transparent materials using plasma formation induced by a femtosecond laser

  • Park, Jung-Kyu;Yoon, Ji-Wook;Cho, Sung-Hak
    • Laser Solutions
    • /
    • v.15 no.1
    • /
    • pp.15-19
    • /
    • 2012
  • The fabrication of internal diffraction gratings with photoinduced refractive index modification in transparent materials was demonstrated using low-density plasma formation excited by a femtosecond (130 fs) Ti: sapphire laser (${\lambda}_p$=800 nm). The refractive index modifications with diameters ranging from $1{\mu}m$ to $3{\mu}m$ were photoinduced after plasma formation occurred upon irradiation with peak intensities of more than $2.0{\times}10^{13}W/cm^2$. The graded refractive index profile was fabricated to be a symmetric around from the center of the point at which low-density plasma occurred.

  • PDF