• Title/Summary/Keyword: Femto

Search Result 135, Processing Time 0.025 seconds

Radiography with Low Energy Protons Generated from Ultraintense Laser-plasma Interactions

  • Choi, Chang-Il;Lee, Dong-Hoon;Kang, Byoung-Hwi;Kim, Yong-Kyun;Choi, Il-Woo;Sung, Jae-Hee;Kim, Chul-Min;Kim, I-Jong;Yu, Tae-Jun;Lee, Seong-Ku;Pae, Ki-Hong;Hafz, Nasr;Jeong, Tae-Moon;Ko, Do-Kyeong;Lee, Jong-Min
    • Journal of the Optical Society of Korea
    • /
    • v.13 no.1
    • /
    • pp.28-32
    • /
    • 2009
  • In order to obtain high quality images of thin objects, we performed an experiment of proton radiography by using low energy protons generated from the interaction of an ultrashort ultraintense laser with solid targets. The protons were produced from a thin polyimide target irradiated by the laser pulse, and their maximum energy was estimated at up to 1.8 MeV. A CR-39 nuclear track detector was used as a proton radiography screen. The proton images were obtained by using an optical microscope and the spatial resolution was evaluated by a Modulation Transfer Function (MTF). We have achieved about $10\;{\mu}m$ spatial resolution of images. The obtained spatial resolution shows about $4{\sim}5$ times better value than the conventional X-ray radiography for inspection or non-destructive test (NDT) purpose.

Study on the Flying Stab3B3ty of the FEMTO(20%) Slider (FEMTO(20%) 슬라이더의 부상안정성 고찰)

  • 강태식;이철우;조긍연;정재명;정준
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.887-887
    • /
    • 2004
  • The areal density of the hard disk drive(HDD) has been increased due to technological advances recently. To achieve the high areal density magnetic recording requires an extremely small gap between the air-bearing surface (ABS) and disk. At the same time, the slider mass and size should be reduced to minimize the physical contact under the operational and environmental conditions. Almost all of 2.5"HDD companies will get ready for adoption of FEMTO slider and already utilized the small slider. FEMTO and small size slider will be mainstream in the 2.5" and other small form factor HDD in the near future. In this study, the flying characteristic of FEMTO slider was examined. Based on the simulation, FEMTO slider is very stable in flying dynamic under the disk modulation, however the flying height sensitivity of the manufacturing tolerances is much bigger than PICO slider. And the other characteristics like impulse response and load/unload dynamic were also examined in this study.tudy.

  • PDF

Cognitive Radio Based Resource Allocation in Femto-Cells

  • Oh, Dong-Chan;Lee, Yong-Hwan
    • Journal of Communications and Networks
    • /
    • v.14 no.3
    • /
    • pp.252-256
    • /
    • 2012
  • We consider resource allocation in femto-cell networks to maximize the throughput while minimizing interference to macro-users nearby. This can be achieved by allocating spectrum resource in a cognitive radio way. The proposed resource allocation is performed in two steps; spectrum sensing and resource scheduling. The femto base station detects idle frequency assignments (FAs) free from the occupation by macro-users and then allocates sub-channels in an idle FA to femto-users, effectively managing the interference problem. Finally, the effectiveness of the proposed scheme is verified by computer simulations.

Statistically Controlled Opportunistic Resource Block Sharing for Femto Cell Networks

  • Shin, Dae Kyu;Choi, Wan;Yu, Takki
    • Journal of Communications and Networks
    • /
    • v.15 no.5
    • /
    • pp.469-475
    • /
    • 2013
  • In this paper, we propose an efficient interference management technique which controls the number of resource blocks (or subcarriers) shared with other cells based on statistical interference levels among cells. The proposed technique tries to maximize average throughput of a femto cell user under a constraint on non-real time control of a femto cell network while guaranteeing a target throughput value of a macro cell user. In our proposed scheme, femto cells opportunistically use resource blocks allocated to other cells if the required average user throughput is not attained with the primarily allocated resource blocks. The proposed method is similar to the underlay approach in cognitive radio systems, but resource block sharing among cells is statistically controlled. For the statistical control, a femto cell sever constructs a table storing average mutual interference among cells and periodically updates the table. This statistical approach fully satisfies the constraint of non-real time control for femto cell networks. Our simulation results show that the proposed scheme achieves higher average femto user throughput than conventional frequency reuse schemes for time varying number of users.

Coverage Analysis of WCDMA-based Femto Cells for Data Offloading (데이터 오프로딩을 위한 WCDMA 기반 펨토셀의 커버리지 분석)

  • Ban, Tae Won;Jung, Bang Chul
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.3
    • /
    • pp.556-560
    • /
    • 2013
  • Recently, solutions to accommodate explosively growing mobile data traffic have attracted intensive attentions since the emergence of high-performance smartphones. Spectrum which can be exploited for mobile communications is very limited. Thus, femto cell is considered as an alternative because it can efficiently offload mobile data traffic from macro cells without using additional spectrum. In this paper, we mathematically analyzed the coverage of femto cell when it is deployed in an area where there exists signals from existing macro base stations. Our numerical results indicate that the coverage of femto cell increases as the total power of femto cell increases or the ratio of power allocated to pilot channel increases. However, it is also shown that the coverage of femto cell is very limited despite its high power when interference signals from macro base stations are strong.

A Self-Organized Frequency Allocation for Interference Avoidance in Femto-cell Systems (펨토셀 환경에서의 셀 간 간섭 회피를 위한 자기 조직화된 자원 할당 기법)

  • Lee, Ho-Seog;Nam, Ji-Hee;Hwang, Sung-Ho;Cho, Ho-Shin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.1A
    • /
    • pp.58-66
    • /
    • 2011
  • In this paper, we propose a self-organized frequency allocation scheme for femto-cell deployment to avoid intercell interference, thereby reducing cell-registration failure. The proposed scheme follows two steps which if necessary manipulate frequency-band reallocation of existing femto-cells to accomodate newly incoming femto-cells. In the first step named "initial frequency allocation", each femto-cell collects neighboring femto-cells' frequency usage state by listening the broadcasting channels, and then selects one of interference-free frequency-bands. If no inference-free band is available, the second step named "frequency adjustment" starts, where frequency-band reallocation is properly performed from the aspect of overall performance improvement. Numerical results shows that the proposed scheme outperforms the best SINR scheme, which has been practically applied to femto-cell deployment, in terms of cell-registration failure probability and system overhead.