• Title/Summary/Keyword: Felsic igneous rocks

Search Result 19, Processing Time 0.021 seconds

Mesozoic Igneous Rocks in the Bupyeong District (부평지역(富平地域)의 중생대(中生代) 화성암류(火成岩類))

  • Suh, Kyu-Sik;Park, Hee-In
    • Economic and Environmental Geology
    • /
    • v.19 no.3
    • /
    • pp.179-192
    • /
    • 1986
  • In the Bupyeong district, Mesozoic pyroclastic rocks, intrusive breccia, granites and felsic porphyries comprise a volcano-plutonic complex, overlying and intruding the Precambrian Gyeonggi gneiss complex. pyroclastic rocks, consisted mainly of rhyolitic welded tuffs, form a topographic circular structure about 10 kilometers in diameter. Granites and felsic porphyries which intruded the pyroclastic rocks are distributed in the inner side and also along the outer margin of the circular structure. K-Ar ages of two granite bodies(biotite), 162 and $148{\pm}7$ Ma, and that of the intrusive rhyolite (whole rock), $121{\pm}6$ Ma indicate that a series of volcano-plutonic igneous activity occurred between Jurassic and early Cretaceous age. Petrochemical characteristics suggest that the pyroclastic rocks, granites and felsic porphyries were originated from the comagmatic source. From the evidences of field occurrence, petrochemical and geochronological characteristics of igneous rocks and the geologic structures, it is believed that the igneous rocks in the Bupyeong district were formed during a Jurassic to early Cretaceous resurgent caldera evolution.

  • PDF

Spectral Analysis of Igneous and Sedimentary Rocks (화성암과 퇴적암의 분광특성분석)

  • 강필종;조민조;이봉주
    • Korean Journal of Remote Sensing
    • /
    • v.6 no.1
    • /
    • pp.49-62
    • /
    • 1990
  • The study is aimed to analize the spectral characteristics of igneous and sedimentary rocks in their reflectance curves obtained from CARY 17-D Spectrophotometer, and correlation between chemical complsition and HHRR data. The reflectance is higher in acidic igneous rocks, while lower in basic igneous rocks. Especially acidic plutonic rocks show sharp absorption bands at 1.4 and 1.9 $\mu\textrm{m}$ due to water inclusion in felsic minerals and basic rocks a broad absoption band near 1.mu.m due to Fe$^{++}$ ion in mafic minerals. Sandstones generally have higher reflectance than siltstones and shales, and show strong absorption at 1.4 and 1.9 $\mu\textrm{m}$. Arkosic sandstones have lower reflectance at blue band due to Fe$^{+++}$ ion exsolved from feldspars. The HHRR data have a positive correlation with SiO$_2$ and $K_2$O, while they have a negative correlation with FeO and MgO.

Investigation on Potential Value for Maritime Cultural Heritage, Historical and Petrographic Characteristics of the Seosan Black Submerged Rocks (Geomenyeo) in Korea (서산 검은여의 역사적 및 암석기재적 특징과 해양유산적 잠재가치 검토)

  • Park, Jun Hyoung;Lee, Chan Hee
    • Journal of Conservation Science
    • /
    • v.35 no.2
    • /
    • pp.131-144
    • /
    • 2019
  • The Seosan Geomenyeo(black submerged rocks), once located at the Cheonsuman bay of Buseokmyeon in Seosan, Korea, is a reef rock now exposed on the land surface. The Geomenyeo can also be found in the ancient geographic maps around the area. The local geographic names, like Buseok and Buseoksa temple are derived from the Geomenyeo. It is composed of ultramafic rocks complex and intrusive felsic igneous rocks. These rocks show diverse facies with various petrographic characteristics caused by geological processes such as intrusion and alteration. Ultramafic rocks complex can be roughly categorized as coarse grained ultramafic rocks and medium grained mafic rocks. Both cases are composed of pyroxene and amphibole, showing the general rock facies of pyroxenite, diabase and lamprophyre. Felsic igneous rocks includes pinkish medium grained granite, porphyritic amphibole granite and aplite with varied mineral compositions. The Geomenyeo is the only ultramafic rocks complex in the Cheonsuman Bay; moreover, it has a distinctive geological and scenic value, as well as a symbolic property. In order to preserve the Geomenyeo, it is necessary to investigate and promote it as a designated heritage site through academic studies, and compensate for the convenience and protection facilities. Additionally, the Geomenyeo should be evaluated as a maritime heritage site, due to the unique local culture as it succeeds the recognition of forefathers which regarded it as a local scenic site with significance.

Geochemistry of cordierite-bearing motasedimentary rocks, northern Yeongnam Massif: implications for provenance and tectonic setting

  • Kim, Jeongmin;Moonsup Cho
    • Proceedings of the Mineralogical Society of Korea Conference
    • /
    • 2003.05a
    • /
    • pp.54-54
    • /
    • 2003
  • The metasedimentary rocks together with various granitoids are the main constituents in Taebaeksan gneiss complex, northern Yeongnam Massif. Chemical compositions of sedimentary rocks may reflect the nature of the provenance and could be crucial for understanding the evolution of early continental crust. Previous workers have suggested that the provenance and tectonic studies based on the geochemistry of sediments are applicable to the Precambrian samples. In this study we analyzed the major, trace and REE elements of metasedimentary rocks to understand their provenance and tectonic setting during sedimentation. The overall geochemical characteristics of metasedimentary rocks are similar to those of average shale of the post-Archean. Major element chemistry indicates mature and sorted nature of the sediments. The degree of weathering in the source rocks the is not uniform, as inferred from a large scatter in chemical indices of weathering (CIW). The immobile trace elements such as Th, Sc, and REE can be used to discriminate various sedimentary processes. The Th/sc ratios (0.9 - 4.4) are larger than those of the upper crust and average shale, suggesting that the felsic source predominates. The contents of Ni and Cr and the variations in the ratio of compatible to incompatible elements are similar to the average post-Archean shale. Uniform chondrite-normalized REE pattern with the LREE enrichment (LaN/SmN = 4.9 ${\pm}$ 0.4) and slight negative Eu anomalies (Eu/Eu$\^$*/ = 0.7 ${\pm}$ 0.1) also support this observation. The presence of negative Eu anomaly indicates that intracrustal igneous processes involving plagioclase separation have affected the provenance rocks. The LREE enrichment implies the major role of felsic rocks in source rocks. The eNd (1.9 Ga) values of metasediment rocks vary from 9.4 to 6.7, corresponding to TDM of 2.9 - 2.7 Ga. On the other hand, the 147Sm/144Nd ratios are 0.1079 - 0.1101, corresponding to typical tettigenous sediments. The geochemical features of metasedimentary rocks such as high abundances of large ion lithophile elements, high ratios of Th/Sc and La/Sm, commonly high Th/U ratios, negative Eu anomalies, and negative eNd, suggest a provenance consisting virtually entirely of recycled upper continental crust in passive margin environment. Tectonic discrimination diagrams based upon major element compositions also support this suggestion. In conjunction with igneous activity and metamorphism in the convergent margin setting at 1.8 - 1. 9 Ga, the transition from passive margin to active margin characterize the Paleoproterozoic crustal evolution in northern Yeongnam Massif.

  • PDF

K-Ar ages and Geochemistry for Granitic and Volcanic Rocks in the Euiseong and Shinryeong Area, Korea (의성-신령지역의 화강암류 및 화산암류에 대한 K-Ar 연대)

  • Kim, Sang Jung;Lee, Hyun Koo;Itaya, Tetsumaru
    • Economic and Environmental Geology
    • /
    • v.30 no.6
    • /
    • pp.603-612
    • /
    • 1997
  • Cretaceous sedimentary-volcanoclastic formations of the Kyeongsang Supergroup were intruded by granitic rocks in the late Cretaceous and early Tertiary. In the Euiseong and Shinryeong area, these intrusives have various compositions including gabbro, diorite,biotite granite and feldspar porphyry. Associated volcanic rocks consist of two chemically distinct types: the bimodal suite of basalt and rhyolite in the Keumseongsan caldera, and the felsic suite of andesite and rhyolite in the Sunamsan-Hwasan calderas. Most rocks are subalkaline, and follow a typical differentiation path of the calc-alkaline magma. The granitic rocks can be distinguished chemically from the volcanics by high Zr/Y ratios. Differences in Zr/Y and K/Y ratios between the two volcanic suites can be accounted for by mantle source and fractionation. Chondrite-normalized trace element abundances of granitic rocks are depleted in Th and K, whereas those of the Keumseongsan rhyolites are depleted in Sr and Ti. Rb, La and Ce is enriched in rhyolites of the Sunamsan-Hwasan calderas. $Rb-SiO_2$ and Rb-Y+Nb discrimination diagrams suggest that the intrusives and volcanics have a volcanic arc setting. K-Ar ages indicate four plutonic episodes : diorite (89 Ma), granite (66~62 Ma), granite and porphyry (55~52 Ma) and gabbro (52~45 Ma), and two volcanisms : bimodal basaltic and rhyolitic volcanism (71~66 Ma) in the Keumseongsan caldera, and felsic andesitic and rhyolitic volcanism (61~54 Ma) in the Sunamsan-Hwasan calderas. Geochemical and age data thus suggest that the igneous rocks are related to several geologic episodes during the late Cretaceous to early Tertiary.

  • PDF

K-Ar ages of the hydrothermal clay deposits and the surrounding igneous rocks in southwest Korea (한국 남서부의 열수점토광상과 주변암에 대한 K-Ar 연대 측정)

  • Kim In Joon;Nagao Keisuke
    • The Journal of the Petrological Society of Korea
    • /
    • v.1 no.1
    • /
    • pp.58-70
    • /
    • 1992
  • From the K-Ar age determinations for the clay deposits and their surrounded rocks in southwest Korea, the ages of the ore formation in all clay deposits fall in very narrow range from 78.1 to 81.4 Ma. K-Ar ages of clay deposits are slightly younger than those of the Cretaceous volcanic rocks (Hwangsan Formation, 81.4 to 86.4 Ma) and are slightly older than those of the Cretaceous granitic rocks (77.1 to 81.5 Ma). These results indicate that clay deposits were formed with genetical relation to late Cretaceous felsic magmatism. Weolgagsan granite, which has been previously considered to be Cretaceous, is proved to be formed its age in Jurassic (140.9 and 144.8 Ma). The close relationships of K-Ar ages between the clay deposits and Cretaceous granitic rocks suggest that the clay deposits were formed during the hydrothermal alterations caused by the thermal effects (hydrothermal circulation) of the granitic intrusions rather than by the hydrothermal activities associated with volcanic activities.

  • PDF

Geochemical and Geochronological Studies on Metaigneous Rocks in the Gyemyeongsan Formation, Northwestern Okcheon Metamorphic Belt and their Tectonic Implication (옥천변성대 북서부 계명산층 내 변성화성암류의 지구화학 및 지구연대학적 연구와 그 지구조적 의의)

  • 박종길;김성원;오창환;김형식
    • The Journal of the Petrological Society of Korea
    • /
    • v.12 no.4
    • /
    • pp.155-169
    • /
    • 2003
  • In the northwest Okcheon metamorphic belt, the metaigneous rocks in the Gyemyeongsan Formation have wider chemical ranges for major, trace and REE elements compared with metaigneous rocks in the Munjuri Formation and do not represent bimodal igneous activity which is characteristic for a continental rifting. The metaigneous rocks in the Munjuri Formation are regarded as products of single magmatic evolution, whereas those in the Gyemyeongsan Formation may be formed through multiple magmatic episodes. The felsic metavolcanic rocks in the Gyemyeongsan Formation show weaker Eu negative anomalies compared with those in the Munjuri Formation but those in both formations show similar degrees of enrichment from LREE to HREE. The metabasites in the Munjuri Formation do not show Eu anomalies but those in the Gyemyeongsan Formation show both positive and negative Eu anomalies(0.59

Loci of Orebodies, the Bupyeong Silver Deposits (부평은광상(富平銀鑛床)의 광체배태장소(鑛體胚胎場所))

  • Suh, Kyu-Sik;Park, Hee-In
    • Economic and Environmental Geology
    • /
    • v.20 no.2
    • /
    • pp.97-106
    • /
    • 1987
  • The geology of the Bupyeong mine area is consisted of Precambrian Gyeonggi gneiss complex and Mesozoic igneous rocks; i.e., pyroclastic rocks, intrusive breccia, granite and felsic porphyries which were formed during a Jurassic to early Cretaceous resurgent caldera evolution. Granites are not observed on the surface and in the underground of the mine. Bupyeong silver deposits occur as stockworks of base metal sulfides- minor silver minerals-quartz - carbonate veinlets, hosted by pyroclastic rocks and intrusive breccia at the southwestern margin of the caldera. Silver occurs mainly as native silver, and other silver minerals, minor in quantity, are argentite, tetrahedrite-freibergite, pyrargyrite, polybasite, canfieldite and dyscrasite. The average grade of silver ore is about 180g/t Ag. Discrimination of silver ore from the country rocks depends largely on the chemical analyses of rock samples taken every two meters from tunnels, diamond-drilling cores and mining stopes, because silver minerals are hardly observed in the ore by crude eye, and silver orebodies do not properly coincide with the concentrated zone of base metal sulfides which were precipitated at the earlier stage than the stage of precipitation of native silver. General characteristics of the loci of the silver orebodies are as follows; (1) The host rocks of orebodies are pyroclastic rocks and intrusive breccia. (2) Many of the orebodies are distributed around Gyeonggi gneiss complex. Especially where the paleotopography of gneiss complex shows a gradual slope, the basal stratigraphic horizon of the pyroclastic rocks unconformably overlying the gneiss complex offered a favorable loci of high grade ore. (3) $N5^{\circ}W$ to $N15^{\circ}$ E-striking faults played an important role in the localization of the orebodies. (4) Conduits of intrusive breccia within the gneiss complex, through which the intrusive breccia intruded into the upper pyroclastic rocks, exist beneath most of the main orebodies. This suggests that the conduits of intrusive breccia served as channelways for the migration of ore fluids.

  • PDF

A Study on the Chemical Index of Alteration of Igneous Rocks (화성암의 화학적 변질지수에 관한 연구)

  • Choi, Eun-Kyeong;Kim, Sung-Wook;Kim, In-Soo;Lee, Kyu-Hwan
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.5
    • /
    • pp.41-54
    • /
    • 2012
  • The weathering process of rocks leads to the reduction of geotechnical bearing capacity. The weathering of granite is frequently used to refer to the degradation of geotechnical property in the design and construction of infra-structure. In this study, the range of values of CIA (chemical index of alteration) and the change of mineral compositions by weathering have been analysed with igneous rock, which covers 45.5% in South Korean territory. Several weathering indices were studied for various rocks found in Korea and significant relationships between different indices were delineated via statistical analysis. The applicability of CIA was found to be the most significant among all weathering indicies. The composition of illite, the secondary weathering residual, generally increases for the felsic rock, and swelling clay material is not included. The weathering of felsic rock will follow a sequential process, starting from bed rock, illite, and chlorite to kaoline. The mafic rock will show weathering process, from bed rock, smectite, and chlorite to kaoline. The intermediate rocks such as andesite and tuff will show similar weathering procedure and the composition of kaoline, chlorite, and smectite tends to increase more than that of illite when the mafic rock is dominated. This means the increase of rock material which has high CEC (cation exchange capacity) during secondary weathering process. However, the characteristics of a specific rock cannot be completely analyzed using merely CIA, since it is exclusively based on chemical composition and corresponding alteration. The CIA can be used to quantify the weathering process in a limited range, and further considerations such as rock composition, strength characteristics will be required to configure the comprehensive weathering impact on any specific region.

Petrology of the Cretaceous Igneous Rocks in the Mt. Baegyang Area, Busan (부산 백양산 지역의 백악기 화산-심성암류에 대한 암석학적 연구)

  • 김향수;고정선;윤성효
    • The Journal of the Petrological Society of Korea
    • /
    • v.12 no.1
    • /
    • pp.32-52
    • /
    • 2003
  • The Mt. Baegyang in Busan, composed of sedimentary basement rocks (Icheonri Formation), andesite (lava), andesitic pyroclastic rocks, fallout tuff and tuffaceous sedimentary rocks, rhyolitic pyroclastic rocks, intrusive rocks (granite-porphyry, felsite, and biotite-granite) of Cretaceous age in ascending order. The volcanic rocks show a section of composite volcano which comprised alternation of andesitic lava and pyroclasitc rocks, rhyolitic pyrocalstic rocks (tuff breccia, lapilli tuff, fine tuff) from the lower to the upper strata. From the major element chemical analysis, the volcanic and intrusive rocks belong to calc-alkaline rock series. The trace element composition and REE patterns of volcanic and plutonic rocks, which are characterized by a high LILE/HFSE ratio and enrichments in LREE, suggest that they are typical of continental margin arc calc-alkaline rocks produced in the subduction environment. Primary basaltic magma might have been derived from partial melting of mantle wedge in the upper mantle under destructive plate margin. Crystallization differentiation of the basaltic magma would have produced the calc-alkaline andesitic magma. And the felsic rhyolitic magma seems to have been evolved from andesitic magma with crystallization differentiation of plagioclase, pyroxene, and hornblende.