• Title/Summary/Keyword: Feeder voltage

Search Result 141, Processing Time 0.026 seconds

An Expert System for Fault Restoration in Distribution System (배전 계통에서의 사고 복구를 위한 전문가 시스템)

  • Choi, B.Y.;Kim, S.H.;Lee, Y.S.;Moon, Y.H.
    • Proceedings of the KIEE Conference
    • /
    • 1990.07a
    • /
    • pp.171-174
    • /
    • 1990
  • When load areas on a feeder are deenergized due to faults,operaters need to identify nelghboring feeders, try to restore customers and minimize out-of-service areas. These cases include knowledge of system states and various constraints such as voltage drop. This paper concerns the load transfer infault restoration. Also, it is considered the operating constraints such as line current capacity, relay trip current, transformer capacity, voltage drop and line loss. The expert system is able to propose the optimal load transfer method by anallzing system states and considering constraints.

  • PDF

Analysis of Voltage Drop in Distribution system using Distributed Load Factor (분산부하율(分散負荷率)을 고려(考慮)한 배전계통(配電系統)의 전압강하(電壓降下) 해석(解析))

  • Jang, Jeong-Tae;Hong, Sun-Hak;Kim, Kern-Joong;Sim, Kuk-Jin
    • Proceedings of the KIEE Conference
    • /
    • 1990.07a
    • /
    • pp.92-95
    • /
    • 1990
  • It is important to analize voltage drop exactly in distribution systems. However the average length of a feeder is about to 40 km long and the exact modelling of a sectional share is very difficult. An efficient simplified model is necessary for dealing with such a long and complicated feeders. Especially, distribution feeders are linked to customers directly and maintaining the end voltages within the regulation is very important. This paper introduces distribution load factor for simplifing the complicated feeders in a proper manner. Test results show the more enhancement of accuracy and the better applicability in field sense.

  • PDF

Mitigation of Negative Impedance Instabilities in a DC/DC Buck-Boost Converter with Composite Load

  • Singh, Suresh;Rathore, Nupur;Fulwani, Deepak
    • Journal of Power Electronics
    • /
    • v.16 no.3
    • /
    • pp.1046-1055
    • /
    • 2016
  • A controller to mitigate the destabilizing effect of constant power load (CPL) is proposed for a DC/DC buck-boost converter. The load profile has been considered to be predominantly of CPL type. The negative incremental resistance of the CPL tends to destabilize the feeder system, which may be an input filter or another DC/DC converter. The proposed sliding mode controller aims to ensure system stability under the dominance of CPL. The effectiveness of the controller has been validated through real-time simulation studies and experiments under various operating conditions. The controller has been demonstrated to be robust with respect to variations in supply voltage and load and capable of mitigating instabilities induced by CPL. Furthermore, the controller has been validated using all possible load profiles, which may arise in modern-day DC-distributed power systems.

Cooperation Schemes of the LTC and SC for Distribution Volt/Var Compensation

  • Choi, Joon-Ho
    • KIEE International Transactions on Power Engineering
    • /
    • v.4A no.4
    • /
    • pp.207-213
    • /
    • 2004
  • In this paper, the on-line volt/var control algorithms of the Load Tap Changer (LTC) transformer and Shunt Capacitor (SC) are proposed for distribution volt/var compensation. In the existing volt/var control of the distribution substation, the feeder voltage and reactive power demand of the distribution are mainly controlled by the LTC transformer tap position and on/off operation of the Sc. It is very difficult to maintain volt/var at the distribution networks within the satisfactory levels due to the discrete operation characteristics of the LTC and SC. In addition, there is the limitation of the LTC and SC operation times, which affects their functional lifetimes. The proposed volt/var control algorithm determines an optimal tap position of the LTC and on/off status of the SC at a distribution substation with multiple connected feeders. The mathematical equations of the proposed method are introduced. A simple case study is performed to verify the effectiveness of the proposed method.

Characteristics Analysis of Induction Motor by Operation of Non- linear Loads under the 3-phase 4-wire grid system (3상 4선식에서 비선형 부하의 운전시 유도전동기의 특성 해석)

  • Kim, Jong-Gyeum;Park, Young-Jeen;Lee, Eun-Wong
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.43-48
    • /
    • 2006
  • This paper presents a scheme on the characteristics of induction motor under the combination of linear & non-linear loads at the three phase 4-wire power distribution system. Under the combination operation of single & three phase load, voltage unbalance will be generated and current unbalance will be more severe by the dropped voltage quality. All power electronic converters used in different types of electronic systems can increase harmonic disturbances by injecting harmonic currents directly into the feeder grid of three phase 4-wire. Harmonic current may cause torque to decrease. Moors may also overheat or become noisy and torque oscillation in the rotor can lead to mechanical resonance and vibration.

  • PDF

Analysis on Momentary Voltage Dips with the Interconnection Operation of Utility-interactive Cogneration Systems Considering Their Generator Type (발전기 형태를 고려한 열병합발전시스템의 배전계통 연계운전시의 순시전압변동 해석)

  • 최준호;김재철
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.14 no.4
    • /
    • pp.23-30
    • /
    • 2000
  • Cogeneration systems are seen as a significant innovation for dispersed energy generation since they are both environmentally friendly and has comparatively high degrees of efficiency. It is especially suited for the decentralized provision of electricity and heat. However, it causes operational problems such as voltage regulation, voltage variation, protection and safety. Especially, it is expected that the interconnection/disconnection operation of cogeneration system has an effect on distribution voltage regulation and variation. Recently, with the increased use of customer-owned computers and other sensitive electronic equipment, electric power quality has become an important concerns. Therefore, the voltage quality problems with cogeneration system should be investigated because the voltage quality is an important part of electrical power quality. In this paper, the momentary voltage dips associated with the interconnection/disconnection operation of cogeneration system are analyzed, including restraint solutions at the customer level. In addition, the unit capacity of cogeneration systems per feeder are evaluated from the view point of momentary voltage variations. The results of this paper are useful analysis data for interconnection standards/guidelines of cogeneration systems and dispersed generation (DG)

  • PDF

Analysis of the Hosting Capacity of the Distributed Generation and Voltage Regulation Devices Operation According to Reactive Power Control Scheme of the Inverter-based Distributed Generation (인버터 기반 분산전원의 무효전력 제어 특성에 따른 분산전원의 수용용량 및 전압조정 설비의 운영 계획 분석)

  • Cho, Gyu-Jung;Kim, Ji-Soo;Song, Jin-Sol;Shin, Jae-Yun;Kim, Dong-Hyun;Kim, Chul-Hwan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.7
    • /
    • pp.809-815
    • /
    • 2018
  • Distributed generations (DGs) using renewable energy resources in power systems have been widely integrated, and many of these DGs have intermittency. DGs can significantly affect the overall voltage profile of the system through the reactive power control for a voltage support. Therefore, in the planning stage of the optimal operation and dispatch of voltage regulation devices, DGs' hosting capacity with the reactive power control scheme should be considered. In this paper, we model the IEEE 34-bus test feeder, including all essential equipment. An optimization method is utilized to determine the optimal siting and operation of the voltage regulation devices in the presence of DGs with reactive power control scheme. Finally, we compare the optimal results of the each case to analyze the relationship among the hosting capacity of the DGs and voltage regulation devices operation.

Algorithm for the Low-Voltage Feeder Design in Consideration of Voltage Drop (전압강하를 고려한 저압간선의 설계 알고리즘)

  • 고영곤;최홍규;조계술
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.16 no.3
    • /
    • pp.84-92
    • /
    • 2002
  • A size of low-voltage conductor cables is determined by the voltage drop of a system the cable impedance and the cable ampacity based on temperature correction factor in accordance with the condition of cable installation. Therefore, the proper temperation correction factor according to the condition of cable installation should be applied to determining the cable ampacity and also the skin effect and proximity effect, along with the kind and size of conductor and the condition of cable installation, should be properly considered to analyze the proper value of resistance and the reactance of the conductors. This paper addresses the systematic design flow for determining the size of low voltage level con여ctor cables in calculating the voltage drop of a power system and proposes a new improved the calculating formula what error should be minimized in comparison with the general formula and which can be applied in design work for determining the size of conductor cables.

Parametric Study for Variable Tap of Autotransformer Neutral in AC Feeding (전기철도 단권변압기 중성점 탭절환 특성연구)

  • Han, Moonseob;Lee, Chang-Mu;Kim, Jae-Won;Chang, Sang-Hoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.1
    • /
    • pp.137-141
    • /
    • 2018
  • The voltage drop is important in electric railway for feeding a huge power of train on fixed feeding area. Nowadays it is tried to operate a high speed trains on conventional lines and there is problem on the voltage drop too. It is simulated on the conditions increased the turn ratio of trolley, installed autotransformer neutral line with variable taps. In result, it is compensated the voltage drop between ATs and better on last AT, not on the position of AT. And it is decreased a return current and neutral current of AT because of unbalance between trolley and feeder. It should be studied faster and more controllable the solid state switchs instead of the mechanical one in order to utilize this system.

A Study on Momentary Voltage Variations and Fault Analysis in the Power Distribution System with Congeration Facilities (COGN). (열병합발전설비가 연계된 배전계통 순시전압변동 및 사고해석에 관한 연구)

  • Jung, Seong-Kyo;Choi, Joon-Ho;Kim, Dae-Won;Kim, Jae-Chul;Son, Hag-Sig;Kim, Yun-Woo
    • Proceedings of the KIEE Conference
    • /
    • 1999.07c
    • /
    • pp.1192-1194
    • /
    • 1999
  • Recently, there has been growing interest in utilizing cogeneration(COGN) system which has high energy efficiency due to the lacking of energy resource, but insertion of cogeneration system into existing power distribution system can cause several problems such as voltage variations, reenergizing of feeder isolated by fault, increasing fault current because of reverse power of COGN. Also these problems increase the complexity of control, protection, and maintenance of power distribution systems. Hence, some problems according to COGN interconnection operation to power distribution system must be taken into account so that operation and security of power distribution system is not disturbed. This paper deals with momentary voltage variations and fault analysis caused by interconnection operation of COGN.

  • PDF