• Title/Summary/Keyword: Feedback fiber lasers

Search Result 11, Processing Time 0.017 seconds

Power-Scalable, Sub-Nanosecond Mode-Locked Erbium-Doped Fiber Laser Based on a Frequency-Shifted-Feedback Ring Cavity Incorporating a Narrow Bandpass Filter

  • Vazquez-Zuniga, Luis Alonso;Jeong, Yoonchan
    • Journal of the Optical Society of Korea
    • /
    • v.17 no.2
    • /
    • pp.177-181
    • /
    • 2013
  • We present an all-fiberized power-scalable, sub-nanosecond mode-locked laser based on a frequency-shifted-feedback ring cavity comprised of an erbium-doped fiber, a downshifting acousto-optic modulator (AOM), and a bandpass filter (BPF). With the aid of the frequency-shifted feedback mechanism provided by the AOM and the narrow filter bandwidth of 0.45 nm, we generate self-starting, mode-locked optical pulses with a spectral bandwidth of ~0.098 nm and a pulsewidth of 432 to 536 ps. In particular, the output power is readily scalable with pump power while keeping the temporal shape and spectral bandwidth. This is obtained via the consolidation of bound pulse modes circulating at the fundamental repetition rate of the cavity. In fact, the consolidated pulses form a single-entity envelope of asymmetric Gaussian shape where no discrete internal pulses are perceived. This result highlights that the inclusion of the narrow BPF into the cavity is crucial to achieving the consolidated pulses.

Effect of spectral drift to coherent optical fiber sensor (가간섭성 광섬유 센서에 대한 주파수 천이도의 영향)

  • Choi, Kyoo-Nam
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.11 no.3
    • /
    • pp.277-282
    • /
    • 2016
  • Effect of spectral drift in coherent fiber laser was investigated by injecting optical feedback to Fabry-Perot resonance loop. Er+3 doped fiber laser having unilateral optical feedback loop in Fabry-Perot configuration using two FBGs was fabricated. The optical feedback was found to be effective in linewidth reduction of fiber laser compared to the case without any optical feedback. The linewidth of three fiber lasers using above configuration were measured to be within 3kHz which is resolution-limited performance of self-heterodyne linewidth measurement set-up. The frequency drift measurement using Mach-Zehnder measurement set-up having 200m optical delay-line in one arm showed that the frequency drift rate of optical feedback fiber laser was measured as 300kHz/sec which was better than the case without optical feedback.

High-power Operation of a Yb Fiber Laser at 1018 nm (1018 nm 파장의 고출력 Yb 광섬유 레이저)

  • Oh, Ye Jin;Park, Hye Mi;Park, Jong Seon;Park, Eun Ji;Kim, Jin Phil;Jeong, Hoon;Kim, Ji Won;Kim, Tae Hyoung;Jeong, Seong Mook;Kim, Ki Hyuck;Yang, Hwan Seok
    • Korean Journal of Optics and Photonics
    • /
    • v.32 no.5
    • /
    • pp.209-214
    • /
    • 2021
  • High-power continuous-wave operation of a Yb-doped double-clad fiber laser at 1018 nm, pumped by high-power diode lasers at 976 nm, is reported. Based on numerical calculation of the gain and laser signal power along the length of the Yb fiber, it is found that robust operation at 1018 nm can be achieved for a high Yb3+-ion excitation density greater than 11.5%, accompanied by high suppression of the feedback from the fiber's end facet. The Yb fiber laser constructed in house yields 626 W of continuous-wave output at 1018 nm for 729 W of incident pump power, corresponding to a slope efficiency of 86.6%. The prospect for power scaling is considered.

A Wide-range Tunable Wavelength-stabilization Technique for Semiconductor Lasers

  • Chen, Han;Qiao, Qinliang;Min, Jing;He, Cong;Zhang, Yuanyuan
    • Current Optics and Photonics
    • /
    • v.5 no.4
    • /
    • pp.384-390
    • /
    • 2021
  • This paper presents a wide-range tunable wavelength-locking technology based on optoelectronic oscillation (OEO) loops for optical fiber sensors and microwave photonics applications, explains the theoretical fundamentals of the design, and demonstrates a method for locking the relative wavelength differences between a leader semiconductor laser and its follower lasers. The input of the OEO loop in the proposed scheme (the relative wavelength difference) determines the radio-frequency (RF) signal frequency of the oscillation output, which is quantized into an injection current signal for feedback to control the wavelength drift of follower lasers so that they follow the wavelength change of the leader laser. The results from a 10-hour continuous experiment in a field environment show that the wavelength-locking accuracy reached ±0.38 GHz with an Allan deviation of 6.1 pm over 2 hours, and the wavelength jitter between the leader and follower lasers was suppressed within 0.01 nm, even though the test equipment was not isolated from vibrations and the temperature was not controlled. Moreover, the tunable range of wavelength locking was maintained from 10 to 17 nm for nonideal electrical devices with limited bandwidth.

Fabrication of tunable all-fiber feedback laser and its application (파장가변이 가능한 완전 광섬유형 궤환 레이저 구현 및 응용)

  • Sohn, Kyung-Rak
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.8
    • /
    • pp.1220-1225
    • /
    • 2009
  • In this paper, a tunable fiber feedback laser based on the use of Sagnac loop filter and fiber Bragg grating (FBG) is proposed. The Sagnac loop filter using a high birefringence fiber provides precise 0.33-nm channel spacing as a multi-wavelength grid filter. Ni-Cr wire wound on the FBG is useful to induce the thermo-optic effect of the fiber. Two types of FBG structures, which have a different length of wire, are demonstrated to show the wavelength shift and separation. To tune FBG by resistant heat, some current is supplied into the wire. When the wavelength matched with one of the cavity modes of Sagnac loop filter, the mode-locked lasing is occurred. The electrical power sensitivity of the resonant wavelength is measured to 1.75pm/mW. This laser configuration can be applied the electrical power system for monitoring the power fluctuation.

Impact of the Spectral Linewidth of a Pseudorandom Binary Sequence (PRBS)-Modulated Laser on Stimulated Brillouin Scattering and Beam Quality

  • Aeri Jung;Sanggwon Song;Kwang Hyun Lee;Jung Hwan Lee;Kyunghwan Oh
    • Current Optics and Photonics
    • /
    • v.7 no.6
    • /
    • pp.665-672
    • /
    • 2023
  • This study focuses on investigating the impact of the spectral linewidth of a seed laser in a master-oscillator power amplifier (MOPA) configuration on stimulated Brillouin scattering and the beam quality of the output diffracted by a grating. To conduct the study, a distributed feedback (DFB) laser is modulated in a pseudorandom binary sequence (PRBS) and amplified by a two-stage Yb-doped fiber amplifier to achieve an output power of over 1 kW. The spectral linewidth of the seed laser is systematically varied from 1 to 12 GHz in the frequency domain by varying the PRBS modulation parameters. The experimental results reveal a tradeoff between suppressing stimulated Brillouin scattering and enhancing beam quality with increased spectral linewidth. Therefore, the study provides valuable insights into optimizing spectral beam combining to achieve high beam quality and scalable power upgrade in fiber lasers.

Stabilization and characterization of a 10 GHz harmonically mode-locked Er-doped fiber ring laser by suppression of relaxation oscillation (완화진동억압을 이용한 10 GHz 고조모드잠금된 고리형 어븀첨가 광섬유 레이저의 출력 안정화 및 특성 측정)

  • 장지웅;이유승;전영민;임동건
    • Korean Journal of Optics and Photonics
    • /
    • v.13 no.1
    • /
    • pp.58-64
    • /
    • 2002
  • Using Mach-Zehnder type intensity modulator, we stabilized a 10 GHz harmonically mode-locked dispersion-compensated fiber ring laser using a feedback controlling system, and we measured its stability. The laser was stabilized for more than 16 hours by controlling the cavity length to suppress the relaxation oscillation frequency component which had caused the laser output instability. The ms timing jitter and ms amplitude noise were measured to be 260-524 fsec and 4~11.5%, respectively, and BER test measurement showed a value of 10$^{-13}$ .

Bidirectional Hybrid DWDM-PON for HDTV/Gigabit Ethernet/CATV Applications

  • Lu, Hai-Han;Tsai, Wen-Shing;Chien, Tzu-Shen;Chen, Shih-Hung;Chi, Yu-Chieh;Liao, Che-Wei
    • ETRI Journal
    • /
    • v.29 no.2
    • /
    • pp.162-168
    • /
    • 2007
  • A new scheme for bi-directional HDTV/Gigabit Ethernet/CATV transmission over a hybrid dense-wavelength-division-multiplexing passive optical network (DWDM-PON) is proposed and demonstrated. It is based on injection-locked vertical-cavity surface-emitting lasers and distributed-feedback laser diodes as transmitters. Services with 129 HDTV channels, a 1.25 Gbps Gigabit Ethernet connection, and 77 CATV channels are successfully demonstrated over 40 km single-mode fiber links. Good performance of bit error rate, carrier-to-noise ratio, composite second order, and composite triple beat is achieved in our proposed bidirectional DWDM-PON.

  • PDF

Efficient Second Harmonic Generation of a High-power Yb-doped Fiber MOPA Incorporating MgO:PPSLT (MgO:PPSLT를 이용한 고출력 Yb 광섬유 레이저 빔의 고효율 이차조화파 변환)

  • Song, Seungbeen;Park, Eunji;Park, Jong Sun;Oh, Yejin;Jeong, Hoon;Kim, Ji Won
    • Korean Journal of Optics and Photonics
    • /
    • v.31 no.3
    • /
    • pp.142-147
    • /
    • 2020
  • In this paper, we report highly efficient second harmonic generation of continuous-wave Yb fiber lasers incorporating a periodically poled LiTaO3 device (MgO:PPSLT) as a frequency converter. The seed laser output from a Yb fiber master oscillator using a Fabry-Perot feedback cavity was amplified in a Yb fiber amplifier stage, yielding 28.5 W of linearly polarized output at 1064 nm in a beam with beam quality, M2, of ~1.07. Second harmonic generation was achieved by passing the laser beam through MgO:PPSLT. Under optimized conditions, we obtained 11.1 W of green laser output at 532 nm for an incident signal power of 25.0 W at 1064 nm, corresponding to a conversion efficiency of 44.4%. The detailed investigation to find the optimized operating conditions and prospects for further improvement are discussed.

Circuit Model for the Effect of Nonradiative Recombination in a High-Speed Distributed-Feedback Laser

  • Nie, Bowen;Chi, Zhijuan;Ding, Qing-an;Li, Xiang;Liu, Changqing;Wang, Xiaojuan;Zhang, Lijun;Song, Juan;Li, Chaofan
    • Current Optics and Photonics
    • /
    • v.4 no.5
    • /
    • pp.434-440
    • /
    • 2020
  • Based on single-mode rate equations, we present an improved equivalent-circuit model for distributed-feedback (DFB) lasers that accounts for the effects of parasitic parameters and nonradiative recombination. This equivalent-circuit model is composed of a parasitic circuit, an electrical circuit, an optical circuit, and a phase circuit, modeling the circuit equations transformed from the rate equations. The validity of the proposed circuit model is verified by comparing simulation results to measured results. The results show that the slope efficiency and threshold current of the model are 0.22 W/A and 13 mA respectively. It is also shown that increasing bias current results in the increase of the relaxation-oscillation frequency. Moreover, we show that the larger the bias current, the lower the frequency chirp, increasing the possibility of extending the transmission distance of an optical-fiber communication system. The results indicate that the proposed circuit model can accurately predict a DFB laser's static and dynamic characteristics.