• Title/Summary/Keyword: Feedback Optical System

Search Result 119, Processing Time 0.032 seconds

Error-Based Modified Disturbance Observer(EM-DOB) for Optical Disk Drive Systems (고배속 광디스크 드라이브를 위한 수정된 구조를 가진 외란 관측기)

  • Kim, Il-Han;Kim, Hong-Rok;Choi, Young-Jin;Suh, Il-Hong;Chung, Wan-Kyun;Park, Myoung-Kwan
    • Proceedings of the KIEE Conference
    • /
    • 2002.07d
    • /
    • pp.2031-2033
    • /
    • 2002
  • 고 배속 광디스크 드라이브(ODD) 시스템에서 위치제어 성능을 향상시키기 위해서는 디스크의 면 진동과 수평 진동과 같은 외란에 의한 오차를 감소 시켜야만 한다. 따라서 하드디스크를 포함한 여러 분야에서 뛰어난 외란 제거 성능을 보이고 있는 외란 관측기는 좋은 대안이 될 수 있다. 그러나 ODD 같은 양산용 전자제품에 외란 관측기를 구현하기 위해서는 별도의 계산 장치가 필요하고, 출력신호를 직접 Feedback 신호로 활용해야 하는 경우가 발생한다. 본 논문에서는 ODD 시스템의 외란을 제거하기 위한 수정된 구조를 가지는 오차를 기초로 한 외란관측기(Error Based Modified Disturbance Observer, EM-DOB)를 제안한다. EM-ROB 시스템은 DOB 시스템에 비해 그 구조가 더욱 간편하고 쉽게 구현 할 수 있다는 장점을 가진다. 그리고 제안한 EM-DOB 시스템의 특성을 연구하고 실험을 통해서 EM-DOB의 효용성을 입증하였다.

  • PDF

Study about Anti-Reflection Coating Design and Characteristic of Laser Diode (Laser Diode의 무반사코팅 설계 및 특성에 관한 연구)

  • Ki, Hyun-Chul;Kim, Hyo-Jin;Kim, Hwe-Jong;Han, Hee-Jong;Gu, Hal-Bon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.424-425
    • /
    • 2007
  • Anti-Reflection and High-reflection coating on the facet of semiconductor laser diode. To prevent internal feedback from both facets for realizing super luminescent diode and reducing the reflection-induced intensity noise of laser diode. Anti-Reflection coating Film was designed by Macleod Simulator. Coating Materials were decided $Ti_3O_5$ and $SiO_2$. Thickness of Coating layer $Ti_3O_5/SiO_2$ were 105[nm], 165[nm]. In the study Anti-Reflection coating Film was design for Laser diode and deposited by Ion-Assisted Deposition system. Then manufactured thin film measured electrical properties(L-I-V, Se, Resistor) and Optical properties(wavelength FFP). Slop-efficiency and FFP characteristic is 0.302[W/A], $22.3^{\circ}$(Horizontal), $24.4^{\circ}$(Vertical).

  • PDF

Study of Speed Profile for Dynamic Stability of EOTS (EOTS의 동적 안정성을 위한 속도 프로파일에 대한 연구)

  • Gyu-Chan Lee;Dong-Gi Kwag
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.6
    • /
    • pp.919-925
    • /
    • 2023
  • Modern drones are equipped with miniaturized mission equipment capable of performing various tasks such as surveillance and reconnaissance. Consequently, these mission equipment are exposed to disturbances like wind loads and motor rotations, which can lead to instability in the operation of the Electro-Optical Targeting System (EOTS). Specifically, simple step inputs for changing the line of sight in EOTS can cause abrupt changes in speed, inducing overshoot and potentially creating instability along with other disturbances. To address this, a velocity profile was designed so that the angular velocity moves in a trapezoidal shape when changing the EOTS line of sight. A Double-loop controller was designed to apply this profile as an input to the external loop receiving position feedback. The system's stability was then compared, and the velocity profile was optimized within a stable range by varying maximum speed and acceleration.

Fiber-optic Mach-Zehnder Interferometer for the Detection of Small AC Magnetic Field (미소 교류 자기장 측정을 위한 Mach-Zehnder 광섬유 간섭계 자기센서 특성분석)

  • 김대연;안준태;공홍진;김병윤
    • Korean Journal of Optics and Photonics
    • /
    • v.2 no.3
    • /
    • pp.139-148
    • /
    • 1991
  • A fiber-optic magnetic sensor system for the detection of small ac magnetic field(200Hz-2 kHz) was constructed. Magnetic field sensing part was fabricated by bonding a section of optical fiber to amorphous metallic glass(2605SC) having large magnetostriction effect. And with the directional coupler, all fiber type Mach-Zehnder interferometer was constructed to measure the variation of the external magnetic field by translating it into the optical phase shift in the interferometer. The signal fading problem of the interferometer, which is due to random phase drifts originated from the environment, i.e., temperature fluctuation, vibrations, etc., was elliminated by feedback phase compensation. This allows the sensitivity to be maintained at the maximum by keeping the interferometer in quadrature phase condition. The frequency response of metallic glass was found to be nearly flat in the range of 90 Hz-2 kHz and dc bias field for the maximum ac response was 3.5 Oe. The interferometer output showed good linearity over the range $\pm$0.5 Oe. For 1 kHz ac magnetic field the scale factor S and the minimum detectable magnetic field were measured to be 8.0 rad/Oe and $3X10^{-6} Oe/\sqrt{Hz}$at 1 Hz detection bandwidth respectively.

  • PDF

Plasma Etching Process based on Real-time Monitoring of Radical Density and Substrate Temperature

  • Takeda, K.;Fukunaga, Y.;Tsutsumi, T.;Ishikawa, K.;Kondo, H.;Sekine, M.;Hori, M.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.93-93
    • /
    • 2016
  • Large scale integrated circuits (LSIs) has been improved by the shrinkage of the circuit dimensions. The smaller chip sizes and increase in circuit density require the miniaturization of the line-width and space between metal interconnections. Therefore, an extreme precise control of the critical dimension and pattern profile is necessary to fabricate next generation nano-electronics devices. The pattern profile control of plasma etching with an accuracy of sub-nanometer must be achieved. To realize the etching process which achieves the problem, understanding of the etching mechanism and precise control of the process based on the real-time monitoring of internal plasma parameters such as etching species density, surface temperature of substrate, etc. are very important. For instance, it is known that the etched profiles of organic low dielectric (low-k) films are sensitive to the substrate temperature and density ratio of H and N atoms in the H2/N2 plasma [1]. In this study, we introduced a feedback control of actual substrate temperature and radical density ratio monitored in real time. And then the dependence of etch rates and profiles of organic films have been evaluated based on the substrate temperatures. In this study, organic low-k films were etched by a dual frequency capacitively coupled plasma employing the mixture of H2/N2 gases. A 100-MHz power was supplied to an upper electrode for plasma generation. The Si substrate was electrostatically chucked to a lower electrode biased by supplying a 2-MHz power. To investigate the effects of H and N radical on the etching profile of organic low-k films, absolute H and N atom densities were measured by vacuum ultraviolet absorption spectroscopy [2]. Moreover, using the optical fiber-type low-coherence interferometer [3], substrate temperature has been measured in real time during etching process. From the measurement results, the temperature raised rapidly just after plasma ignition and was gradually saturated. The temporal change of substrate temperature is a crucial issue to control of surface reactions of reactive species. Therefore, by the intervals of on-off of the plasma discharge, the substrate temperature was maintained within ${\pm}1.5^{\circ}C$ from the set value. As a result, the temperatures were kept within $3^{\circ}C$ during the etching process. Then, we etched organic films with line-and-space pattern using this system. The cross-sections of the organic films etched for 50 s with the substrate temperatures at $20^{\circ}C$ and $100^{\circ}C$ were observed by SEM. From the results, they were different in the sidewall profile. It suggests that the reactions on the sidewalls changed according to the substrate temperature. The precise substrate temperature control method with real-time temperature monitoring and intermittent plasma generation was suggested to contribute on realization of fine pattern etching.

  • PDF

A Semiconductor Etching Process Monitoring System Development using OES Sensor (OES 센서를 이용한 반도체 식각 공정 모니터링 시스템 개발)

  • Kim, Sang-Chul
    • Journal of the Korea Society of Computer and Information
    • /
    • v.18 no.3
    • /
    • pp.107-118
    • /
    • 2013
  • In this paper, we developed the semiconductor monitoring system for the etching process. Around the world, expert companies are competing fiercely since the semiconductor industry is a leading value-added industry that produces the essential components of electronic products. As a result, many researches have been conducted in order to improve the quality, productivity, and characteristics of semiconductor products. Process monitoring techniques has an important role to give an equivalent quality and productivity to produce semiconductor. In fact, since the etching process to form a semiconductor circuit causes great damage to the semiconductors, it is very necessary to develop a system for monitoring the process. The proposed monitoring system is mainly focused on the dry etching process using plasma and it provides the detailed observation, analysis and feedback to managers. It has the functionality of setting scenarios to match the process control automatically. In addition, it maximizes the efficiency of process automation. The result can be immediately reflected to the system since it performs real-time monitoring. UI (User Interface) provides managers with diagnosis of the current state in the process. The monitoring system has diverse functionalities to control the process according to the scenario written in advance, to stop the process efficiently and finally to increase production efficiency.

Phase-Shifting System Using Zero-Crossing Detection for use in Fiber-Optic ESPI (영점검출을 이용한 광섬유형 전자 스페클 패턴 간섭계의 위상이동)

  • Park, Hyoung-Jun;Song, Min-Ho;Lee, Jun-Ho
    • Korean Journal of Optics and Photonics
    • /
    • v.16 no.6
    • /
    • pp.516-520
    • /
    • 2005
  • We proposed an efficient phase stepping method for the use in fiber-optic ESPI. To improve phase-stepping accuracy and efficiency, a fiber-optic Michelson interferometer was phase-modulated by a ramp-driven fiber stretcher, resulting in 4$\pi$ phase excursion in the PD interference signal. The zero-crossing points of the signal, which have consecutive $\pi$ phase difference, were carefully detected and used to generate trigger signals for the CCD camera. From the experimental results by using this algorithm, $\pi$/2 phase-stepping errors between the speckle patterns were measured to be less than 0.6 mrad with 100 Hz image capture speed. Also it has been shown that the error from the nonlinear phase modulation and environmental perturbations could be minimized without any feedback algorithm.

A Study on the Development of High-sensitivity AEC-sensor for Minimization of Dose Creep in Diagnostic Imaging System (진단영상 시스템에서 선량크리프 현상의 최소화를 위한 고감도 AEC 센서에 관한 연구)

  • Kim, Kyo-Tae;Han, Moo-Jae;Heo, Ye-Ji;Kim, Joo-Hee;Kang, Sang-Sik;Park, Ji-Koon;Nam, Sang-Hee
    • Journal of the Korean Society of Radiology
    • /
    • v.10 no.5
    • /
    • pp.321-325
    • /
    • 2016
  • Dose creep is one of clinical errors that arises from the tester's inexperience or carelessness, and according to Task Group #116 of American Association of Physicists in Medicine, its continued occurrence is being reported in the digital method. At this point, the demand for an automatic exposure control device that minimizes the dose creep phenomenon and can improve reproducibility is increasing. In this study is to consider the automatic exposure control device sensor that can is not only easy to produce, but also reduce the dose creep phenomenon by conducting a research on high-efficient semiconductor sensor. As a result, the Intrinsic-type and PIN-type sensors have excellent optical property compared to Ref sensor, would have less shading effect, and have relatively low sensitivity, but would provide accurate feedback signals to automatic exposure control device with its consistent tendency according to exposure condition changes.

Efficient Second Harmonic Generation of a High-power Yb-doped Fiber MOPA Incorporating MgO:PPSLT (MgO:PPSLT를 이용한 고출력 Yb 광섬유 레이저 빔의 고효율 이차조화파 변환)

  • Song, Seungbeen;Park, Eunji;Park, Jong Sun;Oh, Yejin;Jeong, Hoon;Kim, Ji Won
    • Korean Journal of Optics and Photonics
    • /
    • v.31 no.3
    • /
    • pp.142-147
    • /
    • 2020
  • In this paper, we report highly efficient second harmonic generation of continuous-wave Yb fiber lasers incorporating a periodically poled LiTaO3 device (MgO:PPSLT) as a frequency converter. The seed laser output from a Yb fiber master oscillator using a Fabry-Perot feedback cavity was amplified in a Yb fiber amplifier stage, yielding 28.5 W of linearly polarized output at 1064 nm in a beam with beam quality, M2, of ~1.07. Second harmonic generation was achieved by passing the laser beam through MgO:PPSLT. Under optimized conditions, we obtained 11.1 W of green laser output at 532 nm for an incident signal power of 25.0 W at 1064 nm, corresponding to a conversion efficiency of 44.4%. The detailed investigation to find the optimized operating conditions and prospects for further improvement are discussed.