• Title/Summary/Keyword: Feedback Control System

Search Result 2,724, Processing Time 0.027 seconds

Flexible tactile sensor array for foot pressure mapping system in a biped robot

  • Chuang, Cheng-Hsin;Liou, Yi-Rong;Shieh, Ming-Yuan
    • Smart Structures and Systems
    • /
    • v.9 no.6
    • /
    • pp.535-547
    • /
    • 2012
  • Controlling the balance of motion in a context involving a biped robot navigating a rugged surface or a step is a difficult task. In the present study, a $3{\times}5$ flexible piezoelectric tactile sensor array is developed to provide a foot pressure map and zero moment point for a biped robot. We introduce an innovative concept involving structural electrodes on a piezoelectric film in order to improve the sensitivity. The tactile sensor consists of a polymer piezoelectric film, PVDF, between two patterned flexible print circuit substrates (FPC). Additionally, a silicon rubber bump-like structure is attached to the FPC and covered by a polydimethylsiloxane (PDMS) layer. Experimental results show that the output signal of the sensor exhibits a linear behavior within 0.2 N ~ 9 N, while its sensitivity is approximately 42 mV/N. According to the characteristic of the tactile sensor, the readout module is designed for an in-situ display of the pressure magnitudes and distribution within $3{\times}5$ taxels. Furthermore, the trajectory of the zero moment point (ZMP) can also be calculated by this program. Consequently, our tactile sensor module can provide the pressure map and ZMP information to the in-situ feedback to control the balance of moment for a biped robot.

Hygro-thermal effects on wave dispersion responses of magnetostrictive sandwich nanoplates

  • Ebrahimi, Farzad;Dabbagh, Ali;Tornabene, Francesco;Civalek, Omer
    • Advances in nano research
    • /
    • v.7 no.3
    • /
    • pp.157-167
    • /
    • 2019
  • In this paper, a classical plate model is utilized to formulate the wave propagation problem of magnetostrictive sandwich nanoplates (MSNPs) while subjected to hygrothermal loading with respect to the scale effects. Herein, magnetostriction effect is considered and controlled on the basis of a feedback control system. The nanoplate is supposed to be embedded on a visco-Pasternak substrate. The kinematic relations are derived based on the Kirchhoff plate theory; also, combining these obtained equations with Hamilton's principle, the local equations of motion are achieved. According to a nonlocal strain gradient theory (NSGT), the small scale influences are covered precisely by introducing two scale coefficients. Afterwards, the nonlocal governing equations can be derived coupling the local equations with those of the NSGT. Applying an analytical solution, the wave frequency and phase velocity of propagated waves can be gathered solving an eigenvalue problem. On the other hand, accuracy and efficiency of presented model is verified by setting a comparison between the obtained results with those of previous published researches. Effects of different variants are plotted in some figures and the highlights are discussed in detail.

Development of Digital Contents for ADHD Treatment Specialized for VR-based Children

  • Dae-Won Park;Chun-Ok Jang
    • International Journal of Advanced Culture Technology
    • /
    • v.11 no.3
    • /
    • pp.302-309
    • /
    • 2023
  • This study aimed to develop a VR-based digital therapeutic intervention for the diagnosis and treatment of ADHD. The research combined medical data with virtual reality technology to develop an algorithm for ADHD diagnostic scales and implemented a VR-based digital therapeutic platform using a head-mounted display (HMD). This platform can be used for the diagnosis and treatment of ADHD in children and adolescents. Additionally, we four VR games were developed, including archery timing, Antarctic exploration, grocery shopping, and rhythm-based drumming(RBD), incorporating various psychiatric treatment techniques based on cognitive-behavioral therapy(CBT). To evaluate the usability of this digital therapeutic intervention, a group of experts specialized in counseling psychology participated in the study. The evaluations received highly positive feedback regarding the ability to access the system menu while wearing the HMD, the consistency of terminology used in menus and icons, the usage of actual size for 3D graphic elements, and the support for shortcut key functionality. The assessments also indicated that the games could improve attention, working memory, and impulse control, suggesting potential therapeutic effects for ADHD. This intervention could provide a daily treatment method for families experiencing financial constraints that limit hospital-based therapies, thereby reducing the burden.

A Semiconductor Etching Process Monitoring System Development using OES Sensor (OES 센서를 이용한 반도체 식각 공정 모니터링 시스템 개발)

  • Kim, Sang-Chul
    • Journal of the Korea Society of Computer and Information
    • /
    • v.18 no.3
    • /
    • pp.107-118
    • /
    • 2013
  • In this paper, we developed the semiconductor monitoring system for the etching process. Around the world, expert companies are competing fiercely since the semiconductor industry is a leading value-added industry that produces the essential components of electronic products. As a result, many researches have been conducted in order to improve the quality, productivity, and characteristics of semiconductor products. Process monitoring techniques has an important role to give an equivalent quality and productivity to produce semiconductor. In fact, since the etching process to form a semiconductor circuit causes great damage to the semiconductors, it is very necessary to develop a system for monitoring the process. The proposed monitoring system is mainly focused on the dry etching process using plasma and it provides the detailed observation, analysis and feedback to managers. It has the functionality of setting scenarios to match the process control automatically. In addition, it maximizes the efficiency of process automation. The result can be immediately reflected to the system since it performs real-time monitoring. UI (User Interface) provides managers with diagnosis of the current state in the process. The monitoring system has diverse functionalities to control the process according to the scenario written in advance, to stop the process efficiently and finally to increase production efficiency.

Analysis of the West Coast Heavy Snowfall Development Mechanism from 23 to 25 January 2016 (2016년 1월 23일~25일에 발생한 서해안 대설 발달 메커니즘 분석)

  • Lee, Jae-Geun;Min, Gi-Hong
    • Atmosphere
    • /
    • v.28 no.1
    • /
    • pp.53-67
    • /
    • 2018
  • This study examined the lake effect of the Yellow Sea which was induced by the Siberian High pressure system moving over the open waters. The development mechanism of the convective cells over the ocean was studied in detail using the Weather Research and Forecasting model. Numerical experiments consist of the control experiment (CTL) and an experiment changing the yellow sea to dry land (EXP). The CTL simulation result showed distinct high area of relative vorticity, convergence and low-level atmospheric instability than that of the EXP. The result indicates that large surface vorticity and convergence induced vertical motion and low level instability over the ocean when the arctic Siberian air mass moved south over the Yellow Sea. The sensible heat flux at the sea surface gradually decreased while latent heat flux gradually increased. At the beginning stage of air mass modification, sensible heat was the main energy source for convective cell generation. However, in the later stage, latent heat became the main energy source for the development of convective cells. In conclusion, the mechanism of the west coast heavy snowfall caused by modification of the Siberian air mass over the Yellow Sea can be explained by air-sea interaction instability in the following order: (a) cyclonic vorticity caused by diabatic heating induce Ekman pumping and convergence at the surface, (b) sensible heat at the sea surface produce convection, and (c) this leads to latent heat release, and the development of convective cells. The overall process is a manifestation of air-sea interaction and enhancement of convection from positive feedback mechanism.

On the Development of Animated Tutoring Dialogue Agent for Elementary School Science Learning (초등과학 수업을 위한 애니메이션 기반 튜터링 다이얼로그 에이전트 개발)

  • Jeong, Sang-Mok;Han, Byeong-Rae;Song, Gi-Sang
    • Journal of The Korean Association of Information Education
    • /
    • v.9 no.4
    • /
    • pp.673-684
    • /
    • 2005
  • In this research, we have developed a "computer tutor" that mimics the human tutor with animated tutoring dialog agent and the agent was integrated to teaching-learning material for elementary science subject. The developed system is a natural language based teaching-learning system using one-to-one dialogue. The developed pedagogical dialogue teaching-learning system analysis student's answer then provides appropriate answer or questions after comparing the student's answer with elementary school level achievement. When the agent gives either question or answer it uses the TTS(Text-to-Speech) function. Also the agent has an animated human tutor face for providing more human like feedback. The developed dialogue interface has been applied to 64 6th grade students. The test results show that the test group's average score is higher than the control group by 10.797. This shows that unlike conventional web courseware, our approach that "ask-answer" process and the animated character, which has human tutor's emotional expression, attracts students and helps to immerse to the courseware.

  • PDF

Experimental Study on Natural Gas Conversion Vehicle(1) - Fuel Economy, Emission and Roadability (천연가스 개조 승용차에 대한 실험적 연구(1) - 연비, 배기 및 주행 성능)

  • Kim, Hyung-Gu;Kim, Inok;Ohm, Inyong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.23 no.4
    • /
    • pp.410-419
    • /
    • 2015
  • In this study, the roadability, fuel economy and emission characteristics were evaluated for a natural gas converted vehicle. The results are as follows; Not only the shortage of power was observed in stall test, but also large deterioration of acceleration performance was exposed in roadability. Compared to the original LPG system, the acceleration is 76% in start acceleration and 45 ~ 65% in overtaking acceleration, especially the decline became larger when air conditioner is at work. Furthermore, because the mapping data, which controls the injection depending on driving condition, do not match up with injection system, the failure of air-fuel ratio feedback control occurs resulting from the large gap between the required and the really supplied amount of fuel. This failure cause the exhaust gas to emit without catalytic conversion and the fuel economy based on the fuel heat value to get worse 22% in the mode test and 16% in road test respectively. In addition, the existing injection system does not secure enough fuel at the starting so that it may lead to the fail of clod start, the deterioration of hot start and inharmonic of engine at the idle after start.

Efficient Cognitive and Cooperative Communication Scheme for Multiuser OFDMA Systems using Relays (중계기를 사용하는 다중 사용자 OFDMA 시스템을 위한 효율적인 인지 협력 통신 기법)

  • Kang, Min-Gyu;Sang, Young-Jin;Ko, Byung-Hoon;Kim, Kwang-Soon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.3A
    • /
    • pp.235-243
    • /
    • 2009
  • In this paper, we investigate the cognitive and cooperative communication scheme to improve the spectral efficiency in multiuser OFDMA systems using wireless relays. First, we propose the frame structure in which the efficient frequency reuse scheme with the cognitive technique is performed to increase the system throughput. And in the case where the THP (Tomlinson-Harashima preceding) is used for the elimination of interference from the relay, we derive the effective signal to noise ratio of the link largely affected by the channel quantization error. From the system level simulation results, it is shown that the proposed cognitive and cooperative communication scheme increases the overall system performance including the feedback overhead.

The Impact of Optical Illusions on the Vestibular System

  • Ozturk, Seyma Tugba;Serbetcioglu, Mustafa Bulent;Ersin, Kerem;Yilmaz, Oguz
    • Journal of Audiology & Otology
    • /
    • v.25 no.3
    • /
    • pp.152-158
    • /
    • 2021
  • Background and Objectives: Balance control is maintained in stationary and dynamic conditions, with coordinated muscle responses generated by somatosensory, vestibular, and visual inputs. This study aimed to investigate how the vestibular system is affected in the presence of an optical illusion to better understand the interconnected pathways of the visual and vestibular systems. Subjects and Methods: The study involved 54 young adults (27 males and 27 females) aged 18-25 years. The recruited participants were subjected to the cervical vestibular evoked myogenic potentials (cVEMP) test and video head impulse test (vHIT). The cVEMP and vHIT tests were performed once each in the absence and presence of an optical illusion. In addition, after each test, whether the individuals felt balanced was determined using a questionnaire. Results: cVEMP results in the presence of the optical illusion showed shortened latencies and increased amplitudes for the left side in comparison to the results in the absence of the optical illusion (p≤0.05). When vHIT results were compared, it was seen that the right lateral and bilateral anterior canal gains were increased, almost to 1.0 (p<0.05). Conclusions: It is thought that when the visual-vestibular inputs are incompatible with each other, the sensory reweighting mechanism is activated, and this mechanism strengthens the more reliable (vestibular) inputs, while suppressing the less reliable (visual) inputs. As long as the incompatible condition persists, the sensory reweighting mechanism will continue to operate, thanks to the feedback loop from the efferent vestibular system.

The Impact of Optical Illusions on the Vestibular System

  • Ozturk, Seyma Tugba;Serbetcioglu, Mustafa Bulent;Ersin, Kerem;Yilmaz, Oguz
    • Korean Journal of Audiology
    • /
    • v.25 no.3
    • /
    • pp.152-158
    • /
    • 2021
  • Background and Objectives: Balance control is maintained in stationary and dynamic conditions, with coordinated muscle responses generated by somatosensory, vestibular, and visual inputs. This study aimed to investigate how the vestibular system is affected in the presence of an optical illusion to better understand the interconnected pathways of the visual and vestibular systems. Subjects and Methods: The study involved 54 young adults (27 males and 27 females) aged 18-25 years. The recruited participants were subjected to the cervical vestibular evoked myogenic potentials (cVEMP) test and video head impulse test (vHIT). The cVEMP and vHIT tests were performed once each in the absence and presence of an optical illusion. In addition, after each test, whether the individuals felt balanced was determined using a questionnaire. Results: cVEMP results in the presence of the optical illusion showed shortened latencies and increased amplitudes for the left side in comparison to the results in the absence of the optical illusion (p≤0.05). When vHIT results were compared, it was seen that the right lateral and bilateral anterior canal gains were increased, almost to 1.0 (p<0.05). Conclusions: It is thought that when the visual-vestibular inputs are incompatible with each other, the sensory reweighting mechanism is activated, and this mechanism strengthens the more reliable (vestibular) inputs, while suppressing the less reliable (visual) inputs. As long as the incompatible condition persists, the sensory reweighting mechanism will continue to operate, thanks to the feedback loop from the efferent vestibular system.