• Title/Summary/Keyword: Feed-in Tariff

Search Result 45, Processing Time 0.015 seconds

Feed-in tariff for purchasing the power using renewable energies (신.재생에너지 발전차액 구매를 위한 기준가격 산정방안)

  • Jo, I.S.;Rhee, C.H.
    • Proceedings of the KIEE Conference
    • /
    • 2004.11b
    • /
    • pp.287-289
    • /
    • 2004
  • Korea adopted feed-in-tariff system for diffusing the generation using renewable energies in 2002. But, there are many debatable issues about Korea's feed-in-tariff system, such as application duration and tariff level by the renewable energies. This paper surveys problems and issues which has been discussed for two years.

  • PDF

Prediction of End of Life Photovoltaic Modules with Feed in Tariff (발전차액제도가 고려된 태양광 폐모듈 발생량 예측)

  • Park, Jongsung;Lim, Cheolhyun;Kim, Wooram;Park, Byungwook;Lee, Jin-seok;Lee, Sukho
    • Current Photovoltaic Research
    • /
    • v.8 no.1
    • /
    • pp.39-43
    • /
    • 2020
  • In this study, we predict the generation of end-of-life photovoltaic modules when Feed in Tariff applied, in Republic of Korea. Based on the installation of photovoltaic modules, we prepared three different senarios in order to estimate the generation of end-of-life photovoltaic modules. The senarios are i) early worn-out, ii) mid worn-out and iii) late-worn out senario. We selected the mid worn-out senario to estimated the amount of end-of-life photovoltaic modules in this study. Establishment of the end-of-life module generation scenario predicted generation of end-of-life photovoltaic module, and forecasted generation amount of end-of-life module to which Feed in Tariff was applied in consideration of installed photovoltaic modules installed by Feed in Tariff support. The generation of Feed in Tariff-applied end-of-life modules increased from 2021 to 2025 compared to without Feed in Tariff, and since then, the Feed in Tariff-applied end-of-life modules were generated as waste modules during the relevant period (2021 ~ 2025).

A Study on the Assessment of Feed-in Tariffs for Renewable Energy Generation (신.재생에너지 발전전력의 기준가격 산정에 관한 연구)

  • Rhee, Chang-Ho;Jo, In-Seung;Cho, Ki-Seon
    • Proceedings of the KIEE Conference
    • /
    • 2005.07a
    • /
    • pp.733-735
    • /
    • 2005
  • Korea adopted feed-in-tariff system to disseminate the renewable energy generation in 2002, and amended twice this system in October 2003 and October 2004. It is weil known that feed-in-tariff system have been made with noticeable results in Europe countries. In Korea, however, there are many debatable issues about Korea's feed-in-tariff system, such as tariff level, operational period(the term of guarantee). assessment techniques This paper surveys and re-considers several problems and issues which have been discussed during the last two years.

  • PDF

The System Dynamics Model Development for Forecasting the Capacity of Renewables (신재생에너지 보급량 예측을 위한 시스템다이내믹스 모델 개발)

  • Kim, Hyun-Shil;Ko, Kyung-Ho;Ahn, Nam-Sung;Cho, Byung-Oke
    • Korean System Dynamics Review
    • /
    • v.7 no.2
    • /
    • pp.35-56
    • /
    • 2006
  • Korea is implementing strong regulatory derives such as Feed in Tariff to provide incentives for renewable energy developers. But if the government is planning to increase the renewable capacity with only "Price policy" not considering the investors behavior in the competitive electricity market, the policy would be failed. It is necessary system thinking and simulation model analysis to decide government's incentive goal. This study is focusing on the assesment of the competitiveness of renewable energy with the current Feed in Tariff incentives compared to the traditional energy source, specially coal and gas. The simulation results show that the market penetration of renewable energy with the current Feed-in-Tariff level is about 60-70% of the government goal under condition that the solar energy and fuel cell are assumed to provide the whole capacity set in the governmental goal. If the contribution from solar and fuel cell is lower than planned, the total penetration of renewable energy will be dropped more. Notably, Wind power turned out to be proved only 10% of government goal because of its low availability.

  • PDF

Monthly & regional utilization factor of PV Plants in 2009, Korea (2009년 태양광발전소 월별 및 지역별 이용률 분석)

  • Kim, Yangil;Yang, Sungbae;Ryu, Sungho;Oh, Seokhwan
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.65.1-65.1
    • /
    • 2010
  • KPX(Korea Power Exchange) has been supervising FIT(Feed-in-tariff) for renewable energy power plants and supported 289MW photovoltaic power plants with Electric Power Industry Basis Fund in 2009. In this paper, we'll analyze utilization factor of these PV power plants in 2009 and for the latest 3 years and finally utilization factor of other renewable energy power plants in 2009.

  • PDF

An Economic Evaluation under Thailand Feed in Tariff of Residential Roof Top Photovoltaic Grid Connected System with Energy Storage for Voltage Stability Improving

  • Treephak, Kasem;Saelao, Jerawan;Patcharaprakiti, Nopporn
    • International Journal of Advanced Culture Technology
    • /
    • v.3 no.1
    • /
    • pp.120-128
    • /
    • 2015
  • In this paper, Residential roof top photovoltaic system with 9.9 kW design is proposed. The system composed of 200 Watts solar array 33 panels connecting in series 10 strings and parallels 3 strings which have maximum voltage and current are 350 V and 23.8 A. The 10 kW sinusoidal grid-connected inverter with window voltage about 270-350 is selected to convert and transfer DC Power to AC Power at PCC (Point of Common Coupling) of power system following to utility standard. However the impact of fluctuation and uncertainty of weather condition of PV may decrease the voltage stability and voltage collapse of power system. In order to solve this problem the energy storage such 120 V 1200 Ah battery bank and 30 kVAR capacitor are designed for voltage stability control. The other expensed for installing the system such battery charger, cable, accessories and maintenance cost are concerned. The economic analysis by using investment from money loan with interest about 7% and use own money which loss income of deposit about 3% are calculated as 671,844 and 547,044 for PV system with energy storage and non energy storage respectively. The solar energy from PV is about 101,616 Bath per year which evaluated by using the value of $5kWh/m^2/day$ from average peak sun hour (PSH) of the Thailand and 6.96 Bath/kWh of Feed in Tariff Incentive. The payback periods of four scenarios are proposed follow as i) PV system with energy storage and use loan money is 15 years ii) PV system with no energy storage and use loan money is 10 years iii) PV system with energy storage and use deposit money is 9 years iv) PV system with energy storage and use deposit money is 7 years. In addition, the other scenarios of economic analysis such no FIT support and other type of economic analysis such NPV and IRR are proposed in this paper.

Economic Analysis on a PV System in an Apartment Complex (공동주택 태양광발전 시스템의 경제성 평가)

  • Kim, Jin-Hyung
    • Journal of Climate Change Research
    • /
    • v.1 no.2
    • /
    • pp.163-177
    • /
    • 2010
  • This study analyzes the economies of photovoltaic systems in an apartment complex of 1,185 households, in cases of feed-in tariff and subsidy for solar home program of the government. When including the revenue only from electricity sales, NPVs of subsidy and that of feed-in tariff are -560 million KRW and -87 million KRW respectively. With the avoided social cost included without the revenues from CERs, NPVs of subsidy and feed-in tariff are -556 million KRW and -84 million KRW respectively. With the revenues from CERs, NPV of subsidy is -526 million KRW and NPV of feed-in tariff is -54 million KRW. As results of sensitivity analysis based on the changes in capital costs and discount rates, while all scenarios with subsidy including the revenues from CERs are not commercially viable, all scenarios with feed-in tariff exclusive of the revenues from CERs are commercially viable when discount rate is less than 7.2% or capital cost is less than 6,840 thousand KRW/kW. In the cases that include the avoided social cost, while all scenarios with subsidy including the avoided social cost as well as the revenues from CERs are not commercially viable, all scenarios with feed-in tariff are commercially viable without the revenues from CERs when discount rate is less than 7.2% or capital cost is less than 6,856 thousand KRW/KW. The results indicate that the changes in discount rates do not influence the revenues from CERs, but the revenues from electricity sale. Considering that the number of apartment complex and the positive environmental and social benefits from PV system, government needs to promote its diffusion.

The Policy Impact of Renewable Energy Subsidies on Solar PV: The Case of Renewable Portfolio Standard in Korea (국내 태양광 발전 보조금 제도의 정책 효과: 공급의무화제도 사례를 중심으로)

  • Kwon, Tae-Hyeong
    • Journal of the Korean Solar Energy Society
    • /
    • v.37 no.1
    • /
    • pp.59-69
    • /
    • 2017
  • In 2012, Korea introduced a Renewable Portfolio Standard (RPS) scheme, replacing the Feed-in Tariff (FIT) scheme as a market support policy of renewable energy in the electricity market. RPS is to allocate obligatory quota of renewable energy sources for electricity suppliers, whereas FIT is to guarantee high prices for electricity from renewable energy sources. This study examines the effect of this policy change on solar photovoltaic market. According to the study, solar PV market grew fast under FIT as well as under RPS. However, under RPS the size of subsidy for solar PV suppliers was shrunk substantially. In addition, market risk increased severly under RPS due to the volatility of price of renewable energy certificate (REC) as well as of the electricity market price. The small and medium suppliers of solar PV were suffered the most severly from these policy effects. Therefore, the policy reform of RPS is needed to alleviate the market risk of small and medium suppliers of solar PV.

A Study of the Long-term Fuel Mix with the Introduction of Renewable Portfolio Standard (RPS(Renewable Portflio Standard) 제도 도입에 따른 국내 장기 전원구성 변화에 관한 연구)

  • Lee, Jeong-In;Han, Seok-Man;Kim, Bal-Ho H.
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.3
    • /
    • pp.467-477
    • /
    • 2009
  • Renewable Portfolio Standard (RPS) is a regulatory policy that requires the generation companies to increase the proportion of renewable energy sources such as wind, solar, LFG, fuel cell, and small hydro. Recently, Korean government decided to increase the portion of renewable energy to 3% to total electricity generation by 2012 from the current level of 0.13%. To achieve this goal, an innovative plan for market competitiveness would be required in addition to the present Feed-In-Tariff (FIT). That is Korean government has taken it into consideration to introduce a Renewable Portfolio Standard (RPS) as an alternative to FIT. This paper reviews the impact of RPS on the long-term fuel mix in 2020. The studies have been carried out with the GATE-PRO (Generation And Transmission Expansion PROgram) program, a mixed-integer non-linear program developed by Hongik university and Korea Energy Economics Institute. Detailed studies on long-term fuel mix in Korea have been carried out with four RPS scenarios of 3%, 5%, 10% and 20%. The important findings and comments on the results are given to provide an insight on future regulatory policies.