This paper presents neural load torque observer that is used to deadbeat load torque observer and gain compensation by parameter estimator As a result, the response of the PMSM(permanent magnet synchronous motor) follows that nominal plant. The load torque compensation method is composed of a neural deadbeat observer To reduce the noise effect, the post-filter implemented by MA(moving average) process, is adopted. The parameter compensator with RLSM (recursive least square method) parameter estimator is adopted to increase the performance of the load torque observer and main controller The parameter estimator is combined with a high performance neural load torque observer to resolve the problems. The neural network is trained in on-line phases and it is composed by a feed forward recall and error back-propagation training. During the normal operation, the input-output response is sampled and the weighting value is trained multi-times by error back-propagation method at each sample period to accommodate the possible variations in the parameters or load torque. As a result, the proposed control system has a robust and precise system against the load torque and the Parameter variation. A stability and usefulness are verified by computer simulation and experiment.
This paper proposes an audio event classification method using Deep Neural Networks (DNN). The proposed method applies Feed Forward Neural Network (FFNN) to generate event probabilities of ten audio events (dog barks, engine idling, and so on) for each frame. For each frame, mel scale filter bank features of its consecutive frames are used as the input vector of the FFNN. These event probabilities are accumulated for the events and the classification result is determined as the event with the highest accumulated probability. For the same dataset, the best accuracy of previous studies was reported as about 70% when the Support Vector Machine (SVM) was applied. The best accuracy of the proposed method achieves as 79.23% for the UrbanSound8K dataset when 80 mel scale filter bank features each from 7 consecutive frames (in total 560) were implemented as the input vector for the FFNN with two hidden layers and 2,000 neurons per hidden layer. In this configuration, the rectified linear unit was suggested as its activation function.
In this paper, an algorithm is presented to recognize road based on unpaved test courses image. The road images obtained by a video camera undergoes a pre-processing that includes filtering, gray level slicing, masking and identification of unpaved test courses. After this pre-processing, a part of image is grouped into 27 sub-windows and fed into a three-layer feed-forward neural network. The neural network is trained to indicate the road direction. The proposed algorithm has been tested with the images different from the training images, and demonstrated its efficacy for recognizing unpaved road. Based on the test results, it can be said that the algorithm successfully combines the traditional image processing and the neural network principles towards a simpler and more efficient driver warning or assistance system.
최근 웨이블릿 변환은 많은 분야에서 다양하게 적용된다. 본 논문에서 tasks뇌파의 중요한 몇가지 특성파 검출을 위한 다비치 웨이블릿은 뇌파분석에 필요하다. 우리가 제안한 시스템은 다른 방법보다는 특성파 검출에 높은 성능을 가졌다. 본 연구의 뉴럴시스템의 구조는 하나의 은닉층과 3계층 피드포워드층은 오류 BP 학습알고리즘을 적용하였다. 4명의 피험자에게 알고리즘을 적용하여 92% 분류율을 보였다. 제안된 시스템은 웨이블릿과 신경망으로 tasks 뇌파의 보다 정확하게 분석함을 보였다. 모의실험결과 tasks 뇌파는 의사의 노동력을 줄일수 있고 정량적 해석이 가능함을 보였다.
Convolutional Networks (ConvNets) are powerful models that learn hierarchies of visual features, which could also be used to obtain image representations for transfer learning. The basic pipeline for transfer learning is to first train a ConvNet on a large dataset (source task) and then use feed-forward units activation of the trained ConvNet as image representation for smaller datasets (target task). Our key contribution is to demonstrate superior performance of multiple ConvNet layer features over single ConvNet layer features. Combining multiple ConvNet layer features will result in more complex feature space with some features being repetitive. This requires some form of feature selection. We use AdaBoost with single stumps to implicitly select only distinct features that are useful towards classification from concatenated ConvNet features. Experimental results show that using multiple ConvNet layer activation features instead of single ConvNet layer features consistently will produce superior performance. Improvements becomes significant as we increase the distance between source task and the target task.
본 논문에서는 콘포머 기반 FastSpeech2를 이용한 한국어 메뉴 음성합성기를 제안한다. 콘포머는 본래 음성 인식 분야에서 제안된 것으로, 합성곱 신경망과 트랜스포머를 결합하여 광역과 지역 정보를 모두 잘 추출할 수 있도록 한 구조다. 이를 위해 순방향 신경망을 반으로 나누어 제일 처음과 마지막에 위치시켜 멀티 헤드 셀프 어텐션 모듈과 합성곱 신경망을 감싸는 마카론 구조를 구성했다. 본 연구에서는 한국어 음성인식에서 좋은 성능이 확인된 콘포머 구조를 한국어 음성합성에 도입하였다. 기존 음성합성 모델과의 비교를 위하여 트랜스포머 기반의 FastSpeech2와 콘포머 기반의 FastSpeech2를 학습하였다. 이때 데이터셋은 음소 분포를 고려한 자체 제작 데이터셋을 이용하였다. 특히 일반대화 뿐만 아니라, 음식 주문 문장 특화 코퍼스를 제작하고 이를 음성합성 훈련에 사용하였다. 이를 통해 외래어 발음에 대한 기존 음성합성 시스템의 문제점을 보완하였다. ParallelWave GAN을 이용하여 합성음을 생성하고 평가한 결과, 콘포머 기반의 FastSpeech2가 월등한 성능인 MOS 4.04을 달성했다. 본 연구를 통해 한국어 음성합성 모델에서, 동일한 구조를 트랜스포머에서 콘포머로 변경하였을 때 성능이 개선됨을 확인하였다.
Spike detection in long-term EEG monitoring forepilepsy by wavelet transform(WT), artificial neural network(ANN) and the expert system is presented. First, a small set of wavelet coefficients is used to represent the characteristics of a singlechannel epileptic spikes and normal activities. In this stage, two parameters are also extracted from the relation between EEG activities before the spike event and EEG activities with the spike. then, three-layer feed-forward network employing the error back propagation algorithm is trained and tested using parameters obtained from the first stage. Spikes are identified in individual EEG channels by 16 identical neural networks. Finally, 16-channel expert system based on the context information of adjacent channels is introducedto yield more reliable results and reject artifacts. In this study, epileptic spikes and normal activities are selected from 32 patient's EEG in consensus among experts. The result showed that the WT reduced data input size and the preprocessed ANN had more accuracy than that of ANN with the same input size of raw data. Ina clinical test, our expert rule system was capable of rejecting artifacts commonly found in EEG recodings.
This work was performed to develop a model possible to predict the influent flow and influent components, which are one of main disturbances causing process problems at the operation of municipal wastewater treatment plant. In this study, artificial neural network (ANN) was used in order to develop a model that was able to predict the influent flow, $COD_{Mn}$, SS, TN 1 day-ahead, 2day-ahead and 3 day ahead. Multi-layer feed-forward back-propagation network was chosen as neural network type, and tanh-sigmoid function was used as activation function to transport signal at the neural network. And Levenberg-Marquart (LM) algorithm was used as learning algorithm to train neural network. Among 420 data sets except missing data, which were collected between 2005 and 2006 at field plant, 210 data sets were used for training, and other 210 data sets were used for validation. As result of it, ANN model for predicting the influent flow and components 1-3day ahead could be developed successfully. It is expected that this developed model can be practically used as follows: Detecting the fault related to effluent concentration that can be happened in the future by combining with other models to predict process performance in advance, and minimization of the process fault through the establishment of various control strategies based on the detection result.
본 연구에서는 운전자 입장에서 원하는 고속도로 다구간의 통행시간을 예측하는 모형을 구축하였다. 현재 지점검지기를 통해 생성되는 예상통행시간 정보는 장거리 통행시 발생되는 시간처짐현상을 반영하지 못하고 있다. 이로 인하여 도로이용자들의 신뢰가 떨어져. 전체적인 ATIS의 효과를 거두지 못하고 있다. 따라서 본 연구에서는 시간처짐 현상과 영업소 지체를 반영한 고속도로 다구간의 통행시간예측을 위하여, 한국도로공사에서 운영중인 검지기의 교통량 자료와 TCS자료를 사용하였다. 또한 실제 시스템에의 적용을 위해 이상치가 섞여 있는 자료를 유지하였다. 예측에 사용된 모형은 3개의 입력유니트와 2개의 출력유니트를 가지는 선행신경망의 형태로 구성하였으며, 학습방법은 역전파법을 이용하였다. 또한 학습속도와 예측력에 영향을 주는 학습계수, 은닉층의 유니트수, 반복 횟수에 따라 12개의 대안을 구성하여 예측결과를 토대로 최적대안을 모형으로 채택하였다. 이러한 본 연구의 자료특성에 의해 원하는 구간까지의 통행시간을 구할 수가 있다.
Convolutional Neural Network (ConvNet)은 시각적 특징의 계층 구조를 분석하고 학습할 수 있는 대표적인 심층 신경망이다. 첫 번째 신경망 모델인 Neocognitron은 80 년대에 처음 소개되었다. 당시 신경망은 대규모 데이터 집합과 계산 능력이 부족하여 학계와 산업계에서 널리 사용되지 않았다. 그러나 2012년 Krizhevsky는 ImageNet ILSVRC (Large Scale Visual Recognition Challenge) 에서 심층 신경망을 사용하여 시각적 인식 문제를 획기적으로 해결하였고 그로 인해 신경망에 대한 사람들의 관심을 다시 불러 일으켰다. 이미지넷 첼린지에서 제공하는 다양한 이미지 데이터와 병렬 컴퓨팅 하드웨어 (GPU)의 발전이 Krizhevsky의 승리의 주요 요인이었다. 그러므로 최근의 딥 컨볼루션 신경망의 성공을 병렬계산을 위한 GPU의 출현과 더불어 ImageNet과 같은 대규모 이미지 데이터의 가용성으로 정의 할 수 있다. 그러나 이러한 요소는 많은 도메인에서 병목 현상이 될 수 있다. 대부분의 도메인에서 ConvNet을 교육하기 위해 대규모 데이터를 수집하려면 많은 노력이 필요하다. 대규모 데이터를 보유하고 있어도 처음부터 ConvNet을 교육하려면 많은 자원과 시간이 소요된다. 이와 같은 문제점은 전이 학습을 사용하면 해결할 수 있다. 전이 학습은 지식을 원본 도메인에서 새 도메인으로 전이하는 방법이다. 전이학습에는 주요한 두 가지 케이스가 있다. 첫 번째는 고정된 특징점 추출기로서의 ConvNet이고, 두번째는 새 데이터에서 ConvNet을 fine-tuning 하는 것이다. 첫 번째 경우, 사전 훈련 된 ConvNet (예: ImageNet)을 사용하여 ConvNet을 통해 이미지의 피드포워드 활성화를 계산하고 특정 레이어에서 활성화 특징점을 추출한다. 두 번째 경우에는 새 데이터에서 ConvNet 분류기를 교체하고 재교육을 한 후에 사전 훈련된 네트워크의 가중치를 백프로퍼게이션으로 fine-tuning 한다. 이 논문에서는 고정된 특징점 추출기를 여러 개의 ConvNet 레이어를 사용하는 것에 중점을 두었다. 그러나 여러 ConvNet 레이어에서 직접 추출된 차원적 복잡성을 가진 특징점을 적용하는 것은 여전히 어려운 문제이다. 우리는 여러 ConvNet 레이어에서 추출한 특징점이 이미지의 다른 특성을 처리한다는 것을 발견했다. 즉, 여러 ConvNet 레이어의 최적의 조합을 찾으면 더 나은 특징점을 얻을 수 있다. 위의 발견을 토대로 이 논문에서는 단일 ConvNet 계층의 특징점 대신에 전이 학습을 위해 여러 ConvNet 계층의 특징점을 사용하도록 제안한다. 본 논문에서 제안하는 방법은 크게 세단계로 이루어져 있다. 먼저 이미지 데이터셋의 이미지를 ConvNet의 입력으로 넣으면 해당 이미지가 사전 훈련된 AlexNet으로 피드포워드 되고 3개의 fully-connected 레이어의 활성화 틀징점이 추출된다. 둘째, 3개의 ConvNet 레이어의 활성화 특징점을 연결하여 여러 개의 ConvNet 레이어의 특징점을 얻는다. 레이어의 활성화 특징점을 연결을 하는 이유는 더 많은 이미지 정보를 얻기 위해서이다. 동일한 이미지를 사용한 3개의 fully-connected 레이어의 특징점이 연결되면 결과 이미지의 특징점의 차원은 4096 + 4096 + 1000이 된다. 그러나 여러 ConvNet 레이어에서 추출 된 특징점은 동일한 ConvNet에서 추출되므로 특징점이 중복되거나 노이즈를 갖는다. 따라서 세 번째 단계로 PCA (Principal Component Analysis)를 사용하여 교육 단계 전에 주요 특징점을 선택한다. 뚜렷한 특징이 얻어지면, 분류기는 이미지를 보다 정확하게 분류 할 수 있고, 전이 학습의 성능을 향상시킬 수 있다. 제안된 방법을 평가하기 위해 특징점 선택 및 차원축소를 위해 PCA를 사용하여 여러 ConvNet 레이어의 특징점과 단일 ConvNet 레이어의 특징점을 비교하고 3개의 표준 데이터 (Caltech-256, VOC07 및 SUN397)로 실험을 수행했다. 실험결과 제안된 방법은 Caltech-256 데이터의 FC7 레이어로 73.9 %의 정확도를 얻었을 때와 비교하여 75.6 %의 정확도를 보였고 VOC07 데이터의 FC8 레이어로 얻은 69.2 %의 정확도와 비교하여 73.1 %의 정확도를 보였으며 SUN397 데이터의 FC7 레이어로 48.7%의 정확도를 얻었을 때와 비교하여 52.2%의 정확도를 보였다. 본 논문에 제안된 방법은 Caltech-256, VOC07 및 SUN397 데이터에서 각각 기존에 제안된 방법과 비교하여 2.8 %, 2.1 % 및 3.1 %의 성능 향상을 보였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.