• Title/Summary/Keyword: Feed Water

Search Result 1,727, Processing Time 0.025 seconds

Combustion Characteristics of a Hot Water Boiler System Convertibly Fueled by Rice Husk and Heavy Oil - Heavy Oil Combustion Characteristics -

  • Kim, Myoung Ho;Kim, Dong Sun;Park, Seung Je
    • Journal of Biosystems Engineering
    • /
    • v.38 no.4
    • /
    • pp.306-311
    • /
    • 2013
  • Purpose: With the ever-rising energy prices, thermal energy heavily consuming facilities of the agricultural sector such as commercialized greenhouses and large-scale Rice Processing Complexes (RPCs) need to cut down their energy cost if they must run profitable businesses continually. One possible way to reduce their energy cost is to utilize combustible agricultural by-products or low-price oil instead of light oil as the fuel for their boiler systems. This study aims to analyze the heavy oil combustion characteristics of a newly developed hot water boiler system that can use both rice husk and heavy oil as its fuel convertibly. Methods: Heavy oil combustion experiments were conducted in this study employing four fuel feed rates (7.6, 8.5, 9.5, 11.4 $l/h$) at a combustion furnace vacuum pressure of 500 Pa and with four combustion furnace vacuum pressures (375, 500, 625, 750 Pa) at fuel feed rates of 9.5 and 11.4 $l/h$. Temperatures at five locations inside the combustion furnace and 20 additional locations throughout the whole hot water boiler system were measured to ascertain the combustion characteristics of the heavy oil. From the temperature measurement data, the thermal efficiency of the system was calculated. Flue gas smoke density and concentrations of air-polluting components in the flue gas were also measured by a gas analyzer. Results: As the fuel feed rate or combustion furnace vacuum pressure increased, the average temperature in the combustion furnace decreased but the thermal efficiency of the system showed no distinctive change. On the other hand, the thermal efficiency of the system was inversely proportionally to the vacuum level in the furnace. For all experimental conditions, the thermal efficiency remained in the range of 80.1-89.6%. The CO concentration in the flue gas was negligibly low. The NO and $SO_2$ concentration as well as the smoke density met the legal requirements. Conclusions: Considering the combustion temperature characteristics, thermal efficiency, and flue gas composition, the optimal combustion condition of the system seemed to be either the fuel feed rate of 9.5 $l/h$ with a combustion furnace vacuum pressure of 375 Pa or a fuel feed rate of 11.4 $l/h$ with a furnace vacuum pressure between 500 Pa and 625 Pa.

Addition of a Worm Leachate as Source of Humic Substances in the Drinking Water of Broiler Chickens

  • Gomez-Rosales, S.;Angeles, M. De L.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.2
    • /
    • pp.215-222
    • /
    • 2015
  • The objective of this research was to evaluate the growth performance, the apparent ileal digestibility of nitrogen and energy, the retention of nutrients and the apparent metabolizable energy corrected to zero nitrogen retention (AMEn) in broiler chickens supplemented with increasing doses of a worm leachate (WL) as a source of humic substances (HS) in the drinking water. In Exp. 1, 140 male broilers were penned individually and assigned to four WL levels (0%, 10%, 20%, and 30%) mixed in the drinking water from 21 to 49 days of age. Water was offered in plastic bottles tied to the cage. In Exp. 2, 600 male broilers from 21 to 49 days of age housed in floor pens were assigned to three levels of WL (0%, 10%, and 20%) mixed in the drinking water. The WL was mixed with tap water in plastic containers connected by plastic tubing to bell drinkers. The results of both experiments were subjected to analysis of variance and polynomial contrasts. In Exp. 1, the daily water consumption was similar among treatments but the consumption of humic, fulvic, and total humic acids increased linearly (p<0.01) as the WL increased in the drinking water. The feed conversion (p<0.01) and the ileal digestibility of energy, the excretion of dry matter and energy, the retention of dry matter, ash and nitrogen and the AMEn showed quadratic responses (p<0.05) relative to the WL levels in drinking water. In Exp. 2, the increasing level of WL in the drinking water had quadratic effects on the final body weight, daily weight gain and feed conversion ratio (p<0.05). The addition of WL as a source of HS in the drinking water had beneficial effects on the growth performance, ileal digestibility of energy, the retention of nutrients as well on the AMEn in broiler chickens; the best results were observed when the WL was mixed at levels of 20% to 30% in the drinking water.

The Effect of Nb2O5 on Cu-Nb-CeO2 Catalysts for Water Gas Shift Reaction of Compact Reformer (컴팩트 개질기용 수성가스전이 반응을 위한 Cu-CeO2 촉매에 대한 Nb2O5의 영향)

  • JEONG, CHANG-HOON;KIM, TAE-GWANG;BYON, HUI-JU;KIM, JU-HWAN;BAE, EUN-TAEK;SHEN, KAILIN;JEON, KYUNG-WON;JEONG, DAE-WOON
    • Journal of Hydrogen and New Energy
    • /
    • v.31 no.1
    • /
    • pp.57-64
    • /
    • 2020
  • The water-gas shift reaction for the compact reformer was carried out at a gas hourly space velocity of 72,152 h-1 over the Cu-Nb-CeO2 catalysts prepared by co-precipitation method. In order to investigate the effect of Nb2O5 promotion over a Cu-CeO2 catalyst, the Nb2O5 loading amount was systematically changed from 0 to 5 wt.%. Among the prepared catalysts, the Cu-Nb-CeO2 (1%) catalyst showed the highest catalytic activity (CO conversion=61% at 400℃) as well as 100% CO2 selectivity. The high activity and stability of Cu-Nb-CeO2 (1%) catalyst are correlated to high Brunauer-Emmett-Teller surface area, small metallic Cu crystallite size, and enhanced redox property.

Feasibility study on the application of membrane distillation process to treat high strength wastewater (막 증발법(Membrane Distillation)을 이용한 고농도 하·폐수처리 가능성 연구)

  • Kim, Se-Woon;Lee, Dong-Woo;Min, Kyung-Jin;Cho, Jinwoo
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.29 no.2
    • /
    • pp.261-269
    • /
    • 2015
  • In this study, we applied a membrane distillation process to investigate a feasibility of treating a wastewater with high concentration of organic matters including nitrogen and phosphorus. The laboratory scale experiment was performed by using a hydrophobic PVDF membrane with the pore size of $0.22{\mu}m$ and porosity of 75%. The installation was direct contact type where the temperature difference between a feed and permeate side was controlled to have a range from 20 to $60^{\circ}C$. We observed a flux variation and a concentration changes of COD, $PO{_4}^{3-}$-P, $NH_4{^+}$-N and conductivity of feed side as well as permeate side with various temperature differences (20 to $60^{\circ}C$), cross flow velocities (0.09 to 0.27 m/s) through the module, and pH (6.6 to 12.0) of the feed that has the initial concentration of COD about 1,000 mg/L, total nitrogen 390 mg/L, total phosphorus 10 mg/L, conductivity of $7,000{\mu}s/cm$. The results showed that the average flux was ranged from 4 to $40L/m^2/hr$ which was almost similar with the flux of NaCl and deionized water used as a feed solution. The lowest flux was obtained at the operating condition with the temperature difference of $20^{\circ}C$ and cross flow velocity of 0.09 m/s while the highest one was measured with $60^{\circ}C$ and 0.27 m/s. Above 99% of COD and $PO{_4}^{3-}$-P in the feed could be rejected regardless of an operating condition. However, the removal rate of ammonium nitrogen was varied from 64 to 99% depending on the pH of feed solution.

Pervaporation of Fluoroethanol/Water Mixtures through Commercial Poly(vinyl alcohol) Membranes (상용화된 폴리비닐알콜막을 이용한 불화에탄올/물의 투과증발 특성연구)

  • Lee Soo-Bok;Ahn Sang-Man;Choi Seung-Hak;Kim Jeong-Hoon;Lee Yong-Taek
    • Membrane Journal
    • /
    • v.14 no.3
    • /
    • pp.258-262
    • /
    • 2004
  • Trifluoroethyl methacrylate (TFEMA) is used in the preparation of water-repellant paints and optical fiber clading materials, and is manufactured by esterification reaction of trifluoroethanol (TFEA) and methacrylic acid (MA). To estimate the applicability of a pervaporation membrane for the esterification TFEMA esterification, the basic pervaporation properties for TFEA/water mixture were determined using a commercial poly(vinyl alcohol) membrane (GFT Membrane $Pervap^{\circledR}1005$). The effect of TFEA concentration in feed solution and operating temperature on the pervaporation properties was determined. The total permeation flux decreased with increasing TFEA concentration from 90 to 99 wt%, but the separation factor of TFEA/water showed maximum values at 95 wt% TFEA concentration. With increasing feed temperatures from 50 to 8$0^{\circ}C$, the permeation flux and separation factor increased. Higher separation factors and permeation fluxes were observed at 8$0^{\circ}C$ of feed temperature. This pervaporation performance confirmed that the commercial pervaporation membrane could be successfully applied to esterification of TFEMA.

Performance evaluation of forward osmosis (FO) hollow fiber module with various operating conditions (중공사막 모듈을 이용한 정삼투 공정에서의 운영조건 변화에 따른 성능평가)

  • Kim, Bongchul
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.32 no.4
    • /
    • pp.357-361
    • /
    • 2018
  • Forward osmosis (FO) process has been attracting attention for its potential applications such as industrial wastewater treatment, wastewater reclamation and seawater desalination. Particularly, in terms of fouling reversibility and operating energy consumption, the FO process is assumed to be preferable to the reverse osmosis (RO) process. Despite these advantages, there is a difficulty in the empirical step due to the lack of separation and recovery techniques of the draw solution. Therefore, rather than using FO alone, recent developments of the FO process have adapted a hybrid system without draw solution separation/recovery systems, such as the FO-RO osmotic dilution system. In this study, we investigated the performance of the hollow fiber FO module according to various operating conditions. The change of permeate flow rate according to the flow rates of the draw and feed solutions in the process operation is a factor that increases the permeate flow rate, one of the performance factors in the positive osmosis process. Our results reveal that flow rates of draw and feed solutions affect the membrane performance, such as the water flux and the reverse solute flux. Moreover, use of hydraulic pressure on the feed side was shown to yield slightly higher flux than the case without applied pressure. Thus, optimizing the operating conditions is important in the hollow fiber FO system.

Taurine supplementation in diet for olive flounder at low water temperature

  • Kim, Joo-Min;Malintha, G.H.T.;Gunathilaka, G.L.B.E.;Lee, Chorong;Kim, Min-Gi;Lee, Bong-Joo;Kim, Jeong-Dae;Lee, Kyeong-Jun
    • Fisheries and Aquatic Sciences
    • /
    • v.20 no.9
    • /
    • pp.20.1-20.8
    • /
    • 2017
  • The objective of this study was to examine the effect of dietary supplementation of taurine for juvenile olive flounder (Paralichthys olivaceus) at low water temperature ($16.4{\pm}0.36^{\circ}C$). Fish meal (FM)-based diet was used as the control diet. Four other experimental diets were prepared by adding taurine to FM-based diet at 0.25, 0.50, 1.00, and 1. 50% (T1, T2, T3, and T4, respectively). Each experimental diet was fed to triplicate groups of fish (initial mean body weight, 19.5 g) for 10 weeks. At the end of the feeding trial, growth performance and feed utilization, hematological parameters, non-specific immune responses, whole-body proximate composition, and liver mRNA expression of insulin-like growth factor-1 (IGF-1) were investigated. Feed conversion ratio was significantly reduced while protein efficiency ratio was significantly increased in taurine-supplemented groups. Hematocrit and hemoglobin were also significantly increased while plasma cholesterol levels were decreased in taurine-supplemented groups than those in the control group. Nitroblue-tetrazolium, myeloperoxidase and lysozyme activities, and plasma immunoglobulin level were significantly increased by taurine supplementation. These results suggest that dietary taurine supplementation is effective in improving growth performances, feed utilization, and innate immunity of olive flounder in low water temperature season.

Dietary Replacement of L-ascorbyl-2-polyphosphate with Citrus Byproduct on the Growth, Feed Utilization, and Innate Immunity of Juvenile Olive Flounder Paralichthys olivaceus Reared Under Low Water Temperatures (저수온기에서의 넙치(Paralichthys olivaceus) 사료 내 감귤착즙박(Citrus byproduct)의 L-ascorbyl-2-polyphosphate 대체 효과)

  • Eom, Gunho;Kim, Hanse;Shin, Danbi;Lee, Yeonji;Kim, Suhyeok;Song, Jinwoo;Kim, Jaesik;Lee, Kyeong-Jun
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.55 no.3
    • /
    • pp.379-385
    • /
    • 2022
  • This study was conducted to evaluate the dietary supplementation of citrus byproduct (CBP) on the growth performance, feed utilization, and innate immune responses of juvenile olive flounder Paralichthys olivaceus under low water temperatures (11-15℃). Dietary L-ascorbyl-2-polyphosphate was replaced with graded CBP levels at 0 (Con), 25 (CBP25), 50 (CBP50), 75 (CBP75), and 100% (CBP100). Triplicate groups of juvenile olive flounder were handfed with one of the diets twice a day for 42 days. The growth performance and feed utilization of fish fed with diet containing levels of CBP75 or CBP100 increased significantly compared to those of fish with fed Con. Dietary CBP supplementation increased the protein efficiency ratio in fish. There was no significant differences in innate immune responses between groups, even though CBP supplementation tended to increase. These findings indicate that CBP could be used as a vitamin C source and improve the growth performance of juvenile olive flounder under low water temperatures.

Application of Ceramic MF Membrane at the Slow Sand Filtration Process (완속모래여과 공정에서 세라믹 MF 막의 적용)

  • Choi, Kwang-Hun;Park, Jong-Yul;Kim, Su-Han;Kim, Jeong-Sook;Kang, Lim-Seok
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.12
    • /
    • pp.877-882
    • /
    • 2013
  • The application of ultrafiltration (UF) and microfiltration (MF) membranes has been increased for drinking water purification. The advantages of UF/MF membrane process compared to conventional treatment processes are stable operation under varying feed water quality, smaller construction area, and automatic operation. Most membrane treatment plants are designed with polymeric membranes. Recently, some studies suggested that the process of treating surface water with ceramic membranes is competitive to the application of polymeric membranes. Higher water flux, less frequent cleaning, and much longer lifetime are the advantages of ceramic membrane comparing to polymeric membrane. Therefore, this research focused on the application of ceramic MF membrane pilot plant at the slow sand filtration plant. The ceramic membrane pilot plant has three trains that used raw water and sand filtered water as a feed water, respectively. For optimizing the pilot plant process, the coagulation with PACl coagulant was used as a pretreatment of ceramic membrane process. In addition, CEB (Chemical Enhanced Backwash) process using $H_2SO_4$ and NaOCl was used for 1.5 days, respectively. The experimental results showed that applying the optimum coagulant dose before membrane filtration showed enhancing membrane fluxes for both raw water and sand filtered water. Also, when using raw water as a feed of membrane, minimum fouling rate was 2.173 kPa/cycle with 25 mg/L of PACl and when using sand filtered water, the minimum fouling rate was 0.301 kPa/cycle with 5 mg/L of PACl.