• Title/Summary/Keyword: Feed Water

Search Result 1,722, Processing Time 0.026 seconds

Effects of Chilled Drinking Water on Performance of Laying Hens during Constant High Ambient Temperature

  • Gutierrez, W.M.;Min, W.;Chang, H.H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.22 no.5
    • /
    • pp.694-699
    • /
    • 2009
  • The present study was conducted to evaluate the effect of chilled drinking water on the productivity of laying hens under constant high ambient temperature. A total of seventy-two, 123-day-old Hy-line brown layers was divided into two equal groups. The first group (UDWG) was given unchilled water ($23.0{\pm}2.5^{\circ}C$) as a control, and the second group (CDWG) was given chilled water ($16.0{\pm}0.5^{\circ}C$). The laying hens were kept at $30^{\circ}C$ constant temperature with 50% relative humidity and were exposed to 17 h of light per day. Feed intake, egg production, egg quality (egg weight, shell weight, shell thickness, egg color, yolk color, and Haugh unit), and blood samples were collected and analyzed. The results showed that the feed intake of CDWG laying hens was significantly higher (11.64%) than the UDWG counterparts (p<0.01). Egg production of CDWG was also significantly higher (11.27%) than the UDWG counterparts (p<0.001). Furthermore, we observed that the CDWG laying hens had significantly higher (11.72%) levels (p<0.10) of blood calcium, with a corresponding value of 21.92 mg/dl compared to the UDWG hens (19.62 mg/dl). The higher calcium concentration in the CDWG animals may contribute to increased egg production. The CDWG laying hens also contained higher (12.53%) phosphorus concentrations in blood compared to the UDWG (4.22 mg/dl vs. 3.75 mg/dl), although not statistically different (p>0.10). Egg weight and egg quality were not affected by chilled drinking water. In conclusion, providing chilled drinking for laying hens under high ambient temperature improved feed intake and egg production.

Nitrogen and Phosphorus Removal in Domestic Wastewater using SBR Process with Flow Changing Continuous Feed and Cyclic Draw (교대연속유입식 SBR 공정을 이용한 하수중의 질소 및 인 제거)

  • Seo, In-seok;Kim, Hong-suck;Kim, Youn-kwon;Kim, Ji-yeon
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.2
    • /
    • pp.203-208
    • /
    • 2006
  • A continuous feed and cyclic draw SBR process was developed to overcome flow rate fluctuation and to maximize organic matters utilization efficiency for nitrogen and phosphorus removal. The developed SBR process was operated with two parallel reactors. Influent was supplied to one reactor which was not obligately aerated. At the same time, the other reactor was just aerated without supplying influent. In addition this mode was changed periodically. Cycle time was 6hr and aeration time ratio($t_{aer}/t_{total}$) was 0.33, respectively. $COD_{cr}$ and SS removal efficiencies of 95% or higher were achieved. Nitrogen removal was so greatly influenced by influent $COD_{cr}/T-N$ ratio. At influent $COD_{cr}/T-N$ ratio of 5.7, removal efficiencies of ammonia-N, T-N and T-P were 96%, 78% and 55%, respectively. Influent $COD_{cr}/T-N$ of 4 or higher ratio was necessary to achieve 60% or higher nitrogen removal. Organic matters of influent was efficiently utilized in denitrification reaction and consumed COD has a good correlation with removed T-N(about 6.5 mgCOD/mgTN). Continuous feed and cyclic draw SBR process could be one of alternative processes for the removal of nutrients in rural area where $COD_{cr}/T-N$ ratio was low and fluctuation of flow rate was severe.

Influence of Panax notoginseng on the Atherosclerosis Induced by High-cholesterol Feed in Rats (고콜레스테롤 식이로 유발된 동맥경화병태흰쥐의 혈관조직내 지질과산화 및 산화스트레스에 대한 삼칠근의 영향)

  • Kim, Jong-Goo;Park, Sun-Dong;Park, Won-Hwan
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.20 no.5
    • /
    • pp.1187-1195
    • /
    • 2006
  • Panax notoginseng exhibit several beneficial effects including anti-oxidant effects. P. notoginseng is used as a therapeutic agent to stop haemorrhages and a tonic to promoted health in Korean and Chinese medicine. The pharmacokinetic profiles of the main P. notoginseng are still not accurately investigated. The exact mechanism of the anti-oxidant activitys of water extracts of P. notoginseng, however, has not been determined. in present study, I examined the effects of water extracts of P. notoginseng on high cholesterol diet atherosclerosis-induced rats in serum and abdominal aorta. A total of 3-week old 9 male rats of Sprague-Dawley were divided into 3 groups and fed with the basal diet (normal group), high cholesterol diet (atherosclerosis induced group) for 8 weeks, high cholesterol diet supplemented with water extracts of P. notoginseng (P. notoginseng group) for 4 weeks. And rats were sacrificed, serum lipid level, abodominal aortic anti-oxidant activities and lipid peroxide were measured. These results indicated that serum total cholesterl, LDL-cholesterol, triglycerides concentration significently lowered in P. notoginseng group than high cholesterol diet group. But HDL-cholesterol concentraion significently higher in P. notoginseng group than high cholesterol feed group. And abdominal aortic xanthine oxidase activity was significantly reduced by dietary water extracts of P. notoginseng supplementation (p<0.05) Also abdominal aortic superoxide dismutase, catalase, glutathione peroxidase activities were significantly increased by dietary water extracts of P. notoginseng supplementation (p<0.05) Especially, abdominal aortic level of lipid peroxide tended to increase in high cholesterol feed group, but water extract of P. notoginseng intake reduced the value (p<0.05).

Effects of coagulation-UF pretreatment on pressure retarded osmosis membrane process (응집-UF 전처리 공정이 압력지연삼투 공정에 미치는 영향)

  • Goh, Gilhyun;Kim, Suhyun;Kim, Jungsun;Kang, Limseok
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.35 no.4
    • /
    • pp.285-292
    • /
    • 2021
  • Osmotic power is to produce electric power by using the chemical potential of two flows with the difference of salinity. Water permeates through a semipermeable membrane from a low concentration feed solution to a high concentration draw solution due to osmotic pressure. In a pressure retarded osmosis (PRO) process, river water and wastewater are commonly used as low salinity feed solution, whereas seawater and brine from the SWRO plant are employed as draw solution. During the PRO process using wastewater effluent as feed solution, PRO membrane fouling is usually caused by the convective or diffusive transport of PRO which is the most critical step of PRO membrane in order to prevent membrane fouling. The main objective of this study is to assess the PRO membrane fouling reduction by pretreatment to remove organic matter using coagulation-UF membrane process. The experimental results obtained from the pretreatment test showed that the optimum ferric chloride and PAC dosage for removal of organic matter applied for the coagulation and adsorption process was 50 mg/L as FeCl3 (optimum pH 5.5). Coagulation-UF pretreatment process was higher removal efficiency of organic matter, as also resulting in the substantial improvement of water flux of PRO membrane.

Food-Feed Systems in Asia - Review -

  • Devendra, C.;Sevilla, C.;Pezo, D.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.14 no.5
    • /
    • pp.733-745
    • /
    • 2001
  • This review paper discusses the relevance and potential importance of food-feed systems in Asian agricultural systems, and in particular the role and contribution of legumes to these systems. A food-feed system is one that maintains, if not increases, the yield of food crops, sustains soil fertility, and provides dietary nutrients for animals. It involves a cropping pattern within which the feed crop has many beneficial effects without competing for land, soil nutrients and water with the food crops. The agricultural environment is described with reference to the priority agro-ecological zones and prevailing mixed farming systems in Asia. Within these systems, animal production is severely hampered by critical feed shortages which can however, be alleviated by the integration of suitable leguminous forages into the cropping systems. The review also focuses on the role and potential importance of leguminous forages in terms of biodiversity, their uses in farming systems, beneficial effects on animal performance, and draws attention to six case studies in different countries that clearly demonstrate many benefits of developing such food-feed systems. Considerable opportunities exist for widening the use of forage legumes in the development of systems with several complementary advantages (e.g. fenceline, cover crops, fodder banks, forage source and erosion control) to improve the development of sustainable crop-animal systems in Asia.

The Physiological Suppressing Factors of Dry Forage Intake and the Cause of Water Intake Following Dry Forage Feeding in Goats - A Review

  • Sunagawa, Katsunori;Nagamine, Itsuki
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.2
    • /
    • pp.159-169
    • /
    • 2016
  • The goats raised in the barn are usually fed on fresh grass. As dry forage can be stored for long periods in large amounts, dry forage feeding makes it possible to feed large numbers of goats in barns. This review explains the physiological factors involved in suppressing dry forage intake and the cause of drinking following dry forage feeding. Ruminants consume an enormous amount of dry forage in a short time. Eating rates of dry forage rapidly decreased in the first 40 min of feeding and subsequently declined gradually to low states in the remaining time of the feeding period. Saliva in large-type goats is secreted in large volume during the first hour after the commencement of dry forage feeding. It was elucidated that the marked suppression of dry forage intake during the first hour was caused by a feeding-induced hypovolemia and the loss of $NaHCO_3$ due to excessive salivation during the initial stages of dry forage feeding. On the other hand, it was indicated that the marked decrease in feed intake observed in the second hour of the 2 h feeding period was related to ruminal distension caused by the feed consumed and the copious amount of saliva secreted during dry forage feeding. In addition, results indicate that the marked decreases in dry forage intake after 40 min of feeding are caused by increases in plasma osmolality and subsequent thirst sensations produced by dry forage feeding. After 40 min of the 2 h dry forage feeding period, the feed salt content is absorbed into the rumen and plasma osmolality increases. The combined effects of ruminal distension and increased plasma osmolality accounted for 77.6% of the suppression of dry forage intake 40 min after the start of dry forage feeding. The results indicate that ruminal distension and increased plasma osmolality are the main physiological factors in suppression of dry forage intake in large-type goats. There was very little drinking behavior observed during the first hour of the 2 h feeding period most water consumption occurring in the second hour. The cause of this thirst sensation during the second hour of dry forage feeding period was not hypovolemia brought about by excessive salivation, but rather increases in plasma osmolality due to the ruminal absorption of salt from the consumed feed. This suggests the water intake following dry forage feeding is determined by the level of salt content in the feed.

Evaluation of System operated by Feed-and-discontinuous Bleed Mode using Tubular Type Ultrafiltration Membrane for Water Treatment (Feed-and-discontinuous Bleed 방식으로 운전되는 정수처리용 관상형 한외여과막 시스템의 평가)

  • Choi, Hyeok;Seo, Young-Woo;Kim, Hyung-Soo;Im, Jong-Seong;Hwang, Sun-Jin
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.12
    • /
    • pp.2187-2195
    • /
    • 2000
  • A water treatment system using membrane separation technology can provide stable effluent quality and its maintenance is relatively easy comparing to the conventional water treatment system. In addition, the membrane filtration system is very compact such that it can replace existing water treatment processes of coagulation/sedimentation/filtration by only one process. However, a major problem associated with membrane filtration is flux decline with operating time due to concentration polarization and fouling, so a systematic study on evaluation of long-term filtration performance is necessary. A membrane filtration system using tubular type ultrafiltration membranes with MWCO of 30.000 Da was constructed for this study and it had been operated in a feed-and-discontinuous bleed mode. Flux was stabilized after operation of 1.500 hours and maintaining above 25 LMH until 4.000 hours. Contaminants causing SS and turbidity were almost completely removed while the $UV_{260}$ and DOC removals were 55% and 49%, respectively. A simple mass balance equation was developed to predict maximum concentrations of SS, turbidity, $UV_{260}$ and DOC in a operation cycle. For SS and turbidity the measured max, concentrations in each cycle agree well with the predicted values while the measured max, concentrations of $UV_{260}$ and DOC were 59% and 37% of the predicted values, respectively.

  • PDF

The Effects of Water Deprivation on Cerebrospinal Fluid Constituents During Feeding in Sheep

  • Sunagawa, Katsunori;Weisinger, Richard S.;McKinley, Michael J.;Purcell, Brett S.;Thomson, Craig;Burns, Peta L.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.14 no.4
    • /
    • pp.467-473
    • /
    • 2001
  • The internal humoral factors in the central regulation of dry feed intake during water deprivation in sheep were investigated by measurement of cerebrospinal fluid (CSF) constituents. Five animals were fed dried alfalfa chaff for 2 hours once a day. Sheep in the water deprivation treatment were deprived of water for 28 hours, while the sheep in the control treatment were given free access to water. During the first hour of the 2 hour feeding period, a rapid reduction in blood volume occured in both treatments (water deprivation and free access to water). The CSF concentrations of Na, Cl and osmolality during the second hour of the 2 hour feeding period in both treatments were greater (p<0.01) than those during the first hour. The drinking behaviors in sheep were concentrated during the second hour of the 2 hour feeding period in periods of free access to water. Water intake during feeding in periods of free access to water was 1110 ml/2 h. The levels of increase in CSF osmolality with feeding during water deprivation were greater (p<0.01) than during periods of free access to water. The changes in CSF osmolality with feeding during water deprivation produced more vigorous thirst sensations in the brain compared to during periods of free access to water. The eating rates for the first hour of the allotted 2 hour feeding period were the same under both treatments. However, the eating rates for the second hour during water deprivation periods decreased significantly (p<0.05) compared to those during periods of free access to water. The decreased eating rates for the second hour during water deprivation may be due to the vigorous thirst sensations produced in the brain. The results suggest that the increase in CSF osmolality with feeding during water deprivation acts as a thirst and satiety factor in brain mechanisms controlling feeding to decrease dry feed intake in water-deprived sheep.

Effects of the Duration of Liquid Feeding on Performance and Nutrient Digestibility in Weaned Pigs

  • Han, Yung-Keun;Thacker, P.A.;Yang, Joo-Sung
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.19 no.3
    • /
    • pp.396-401
    • /
    • 2006
  • A total of 72 castrated, crossbred ($Landrace{\times}Yorkshire$) piglets ($5.7{\pm}0.7kg$ BW) were allotted to one of three treatments including: a dry crumbled feed fed for 40 days; liquid feed provided for 10 days followed by dry crumbled feed for 30 days; and liquid feed provided for 20 days followed by dry crumbled feed for 20 days. Liquid feed was produced fresh each day by mixing water with dry crumbled feed at a ratio of 3:1. Pigs fed liquid feed for 10 days had a higher weight gain during the first 10 days (+16.8%; p = 0.01) and over the entire experimental period (+4.9%; p = 0.07) than pigs offered dry feed. Pigs fed liquid feed for 20 days also had a higher weight gain during the period from d 0 to 10 (+12.8%; p = 0.01), from d 10 to 20 (+8.5%; p = 0.06) and from d 0 to 20 (+9.7%; p = 0.01) than pigs offered dry feed. Pigs fed liquid feed for the first 10 days had higher feed intakes from d 0 to 10 (+22.6%; p = 0.01) and from d 0 to 40 (+5.3%; p = 0.02) than pigs offered dry feed. Pigs fed liquid feed for the first 20 days had a higher feed intake from d 0 to 10 (+21.8%; p = 0.01), from d 10 to 20 (+10.6%; p = 0.06), from d 0 to 20 (+14.6%; p = 0.01) and from d 0 to 40 (+6.6%; p = 0.02) than pigs offered dry feed. Feed conversion from d 0 to 40 tended to be poorer for pigs fed liquid feed during the first 20 days (p = 0.08) indicating an increase in feed wastage with liquid feeding. Nutrient digestibility at day 10 was unaffected by dietary treatment. However, at day 30, pigs fed liquid feed for 10 days had higher digestibility of dry matter (p = 0.08), energy (p = 0.10), crude protein (p = 0.03) and neutral detergent fibre (p = 0.05) than pigs fed liquid feed for 20 days. In conclusion, liquid feeding for 10 or 20 days increased the performance of weaned pigs during the specific time period that liquid feeding occurred but there were no carry over effects into subsequent production periods.

Assessment of Power Generation by Pressure Retarded Osmosis Process from Spiral-Wound Membrane Pilot-Plant (나권형 모듈을 이용한 압력지연삼투 공정의 에너지생산에 관한 연구)

  • Go, Gil hyun;Park, Tae shin;Kang, Lim seok
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.38 no.9
    • /
    • pp.476-481
    • /
    • 2016
  • Pressure retarded osmosis (PRO) is a quite new technique for power generation using an osmotically driven membrane process. In the PRO process, water permeates through a semipermeable membrane from a low concentration feed solution to a high concentration draw solution due to osmotic pressure. This study carried out to evaluate the performance of the 8 in spiral wound membrane module using reverse osmosis concentrate for a draw solution and reverse osmosis permeate for a feed solution. Three different flowrates of draw and feed solution, such as 2.4 L/min, 5.0 L/min, and 10.0 L/min were used to estimate the power density and water flux under various range of hydraulic pressure differences between 5 bar and 30 bar. In addition, the effects of feed and draw solution concentration, flowrate, and mixing ratio on 8 in spiral wound PRO membrane module performance were investigated in this study. As major results, increases of the draw solution concentration lead to the improvement of power denstiy, and water flux. Also, increase of flowrate resulted in the improvement of power density and water flux. In addition, optimal mixing ratio of draw and feed solution inlet flowrate was found to be 1:1 to attain a maximum power denstiy.