• Title/Summary/Keyword: Feed Shaft Driving System

Search Result 7, Processing Time 0.02 seconds

Development of A Feed Shaft Driving System Using The Fifth Wheel as a Speed Sensor

  • Kim, J.H.;Kim, K.U.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1996.06c
    • /
    • pp.469-477
    • /
    • 1996
  • In order to maintain a constant ratio between the ground wheel and fed shaft of planters, a feedback control unit was designed to drive the feed shaft in proportional to the ground speed. The fifth wheel was used as a ground speed sensor for the control unit. Using this control unit a feed shaft driving system was developed and tested both in the laboratory and field to evaluate it performance . The test results showed that the system drove the feed shaft in proportional to the ground speed in the normal planting speed range of 0.5 -0.8m/s with an error of less than 5%.

  • PDF

Development of a Feed Shaft Driving System for Planters Using the Fifth Wheel as a Speed Sensor (5륜을 이용한 주행 속도 비례형 파종축 구동 장치 개발)

  • 김중현;김경욱
    • Journal of Biosystems Engineering
    • /
    • v.21 no.4
    • /
    • pp.399-405
    • /
    • 1996
  • In order to maintain a constant speed ratio between the tractor and attached seed planter, a feedback control unit to rotate the feed shaft of the planter in proportional to the ground speed of the tractor was designed. The fifth wheel was used as a ground speed sensor for the unit. Using this control unit a feed shaft driving system was developed and tested to estimate its performance both in laboratory and fields. The test results showed that the system rotates the feed shaft proportionally to the ground speed in the range of the normal planting speed of 0.5-0.8m/s with errors less than 5%.

  • PDF

A Study on the Feed Characteristics of Twist Friction Driver (Twist Friction Driver의 이송특성에 관한 연구)

  • Jeong, Jun-Hui;Lee, Eung-Suk;An, Dong-Yul
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.934-939
    • /
    • 2004
  • This paper propose a study on the Feed Characteristics of Twist Friction Driver. We are using Twist Friction Driving mechanism system. The system consists of Twist Friction Driver elements such as driving shaft, driven roller, Spring for pre-load, Air bearing guide, Servo motor, and measuring devices such as Encoder of Servo motor, Laser interferometer, LVDT . The Twist Friction driver is mechanically simple and very quiet at high speed, and has low pre-load. So The Twist Friction driver can materialize an ultra precision feed-resolution. The feed characteristics of the driver is determined by slip and angular error, backlash.

  • PDF

An experimental study on the generative elements of feed errors in CNC cylindrical grinding machine (CNC 원통연삭기 이송오차의 발생요인에 관한 실험적 연구)

  • Ko, Hai-Ju;Jung, Yoon-Gyo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.10 no.1
    • /
    • pp.62-69
    • /
    • 1993
  • The accuracy of machine tools is the major factor concerned with the acuracy of the processed work. The feed errors of feed system in machine tool, therfore, make the machining errors of work directly on processing. In this point, this study focused on the generative elements of feed errors in CNC cylindrical grinding machine, such as supporting method of ball screw, the effect of pitch and yaw error and the position detecting method in servo system when operating its shaft of grinding wheel head. Furthermore, in order to improve the driving accuracy of this machine tool, feed errors are measured by a laser interferometer. Results obtained in this study provide some useful informations to attain high accuracy of CNC machine tool.

  • PDF

Development and Verification of the Automated Cow-Feeding System Driven by AGV (무인이송로봇기반 자동 소사료 공급 시스템 개발 및 검증)

  • Ahn, Sung-Su;Lee, Yong-Chan;Yoo, Ji-Hun;Lee, Yun-Jung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.3
    • /
    • pp.232-241
    • /
    • 2017
  • This paper presents an automated cow-feeding system based on an AGV and screw conveyor for domestic livestock farms, which are becoming larger and more commercialized. The system includes a hopper module for loading pellet-type mixed feed at the top of the system, a transfer module mounted with a screw conveyor to transfer feed from the hopper module to the outlet module, an outlet module composed of belt conveyors, and an electromagnetic guided driving-type AGV. The weight of the loaded feed is measured by a load cell located under the transfer module. The system reads the feed discharge information stored in RFID tags installed in each cowshed cell, and a predetermined amount of feed is discharged while the AGV is moving. A cow-feed test system was constructed to determine the design parameters of the screw conveyor in the transfer module that determine the feeding capacity. These parameters include the screw's outer diameter, the screw shaft outer diameter, and screw pitch. The parameters were applied to the finalized cow-feed system construction. A DSP-based main controller and cow-feeding algorithm for different scenarios were also developed to control the system. Experimental results confirmed that the system could supply a total of 21 kg of feed uniformly at 420 g/s for a cowshed cell which has 7 cows. The driving distance was 5 m and the speed was 0.1 m/s. Thus, the proposed system could be applied to standardized domestic livestock farms.

A Study of the Life Test of Hydraulic Pump Driving Gear Box for the Large Excavator (초대형 굴삭기용 유압펌프 구동 기어박스의 수명시험에 관한 연구)

  • Lee, Yong Bum
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.3
    • /
    • pp.211-216
    • /
    • 2015
  • Large hydraulic excavator weighted 90 tons used the several pumps installed in parallel to use the hydraulic pump driving gearbox to improve fuel consumption by improving the energy efficiency of the hydraulic system. Gearbox connected to hydraulic pump supply the mechanical output to the high pressure and low pressure pump to be supplied by torque and rotation, which are the mechanical power, through a input shaft connected to large size engine of the excavator. So, gearbox connected to hydraulic pump is same as main artery in the human body and is required long life because it operates the hydraulic pump continuously during operating the engine. This study had used oil contamination analysis method to check the wear characteristics of the gearbox and frequency response characteristic analysis method to check the failure of the teeth failures of gearbox, while the test equipment adopted by the electrical feedback method to reduce the energy consumption was operating for the life assessment, in which the required power was 600 kW input power.