• Title/Summary/Keyword: Feed Pressure

Search Result 530, Processing Time 0.032 seconds

Hydrothermal Pressure Effect over Preparation of MoS2: Catalyst Characterization and Direct Methanation (수열 압력 제조 조건이 MoS2 촉매 특성과 직접 메탄화 반응에 미치는 영향)

  • PARK, JEONGHWAN;KIM, SEONGSOO;KIM, JINGUL
    • Journal of Hydrogen and New Energy
    • /
    • v.29 no.2
    • /
    • pp.170-180
    • /
    • 2018
  • After $MoS_2$ catalyst was prepared at 1, 30, and 70 atm, the hydrothermal pressure effect over preparation of $MoS_2$ was investigated in terms of catalyst characterization and direct methanation. Multifaceted characterization techniques such as XRD, BET, SEM, TPR, EDS, and XPS were used to analyze and investigate the effect of high pressure over the preparation of surface and bulk $MoS_2$ catalyst. Result from XRD, SEM, and BET demonstrated that $MoS_2$ was more dispersed as preparation pressure was increased, which resulted finer $MoS_2$ crystal size and higher surface area. EDS result confirmed that bulk composition was $MoS_2$ and XPS result showed that S/Mo mole ratio of surface was about 1.3. TPR showed that $MoS_2$ prepared at 30 atm possessed higher active surface sites than $MoS_2$ prepared at 1 atm and these sites could contribute to higher CO yield during methanation. Direct methanation was used to evaluate the CO conversion of the both catalysts prepared at 1 atm and 30 atm and reaction condition was at feed mole ratio of $H_2/CO=1$, GHSV=4800, 30 atm, temperature($^{\circ}C$) of 300, 350, 400, and 450. $MoS_2$ prepared at 30 atm showed more stable and higher CO conversion than $MoS_2$ prepared at 1 atm. Faster deactivation was occurred over $MoS_2$ prepared at 1 atm, which indicated that preparation pressure of $MoS_2$ catalyst was the dominant factor to improve the yield of direct methanation.

Investigation on Performance Analysis of Sodium-Water Reaction Pressure Relief System of Prototype Generation-IV Sodium-Cooled Fast Reactor (소듐냉각고속로 원형로 소듐-물 반응 압력완화계통 성능 해석 연구)

  • Park, Sun Hee;Han, Ji-Woong
    • Korean Chemical Engineering Research
    • /
    • v.57 no.1
    • /
    • pp.28-41
    • /
    • 2019
  • We carried out performance analysis of Sodium-Water Reaction Pressure Relief System of Prototype Generation-IV Sodium-Cooled Fast Reactor. We analyzed transient-dynamic behavior of fluids inside the steam generator to vent into a sodium dump tank or a water dump tank when tubes in the steam generator were broken to cause a large-water-leak accident. Accordingly, we preliminarily evaluated design requirements of our system. Our results showed that sodium in the shell side of the steam generator and in Intermediate Heat Transport System was completely vented within 50 s and feed water in the tube side of the steam generator was completely vented within 2.5 s. It was analyzed that pressure of the tube side of the steam generator was higher than pressure of the shell side of the steam generator, which showed that sodium in the shell side did not flow into the tube side. Our results are expected to be used as basis information to performance analysis of Sodium-Water Reaction Pressure Relief System of Prototype Generation-IV Sodium-Cooled Fast Reactor.

Removal/Recovery of VOCs Using a Rubbery Polymeric Membrane (Rubbery 고분가 막을 이용한 휘발성 유기화학물의 제거 및 회수)

  • Cha, Jun-Seok
    • Membrane Journal
    • /
    • v.6 no.3
    • /
    • pp.173-181
    • /
    • 1996
  • Common volatile organic compounds(VOCs) such as toluene and methanol were removed successfully from N$_{2}$ using a novel silicone-coated hollow fiber membrane module. This novel membrane is a thin film composite(TFC) and was highly efficient in removing VOCs selectively from a N$_{2}$ stream. This membrane had some innate advantages over other silicone-based membrane in that the selective barrier was ultrathin(~1 $\mu$m) and the porosity of the polypropylene substrate was high which leads to a low permeation resistance. The substram was very strongly bonded to the coating layer by plasma polymerization and can withstand a very high pressure. A small hollow fiber module having a length of 25cm and 50 fibers could remove 96~99% of toluene as well as methanol vapors when the feed flow rate was up to 60cc/min. The percent removal of VOCs were even higher when the feed inlet concentration was higher. This process is especially suitable for treating streams having a low flow rate and high VOCs concentration. The permeances of VOCs through this membrane was in the range of $4~30 \times 10^{-9}gmol/sec \cdot cm^{2}\cdot cmHg$ for both toluene and methanol, and nitrogen permeance was between $3~9 \times 10^{-10}gmol/sec \cdot cm^{2} \cdot cmHg$. High separation factor between 10~55 for toluene/N$_{2}$ and 15~125 for methanol/N$_{2}$ were obtained depending on the feed flow rate ranges and feed VOCs concentration levels.

  • PDF

A Study on Membrane Fouling by Flux and Linear Velocity in Coagulation/Ultrafiltration Membrane System (응집·한외여과 조합공정에서 플럭스와 선속도가 막오염에 미치는 영향에 관한 연구)

  • Moon, Seong-Yong;Lee, Sang-Hyup;Kim, Seung-Hyun;Yoon, Cho-Hee
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.19 no.4
    • /
    • pp.429-436
    • /
    • 2005
  • A coagulation/ultrafiltration membrane hybrid system was operated to treat river water with capacity of $0.06m^3/d$. The impact on membrane fouling by flux and linear velocity was investigated. It is known that pressure increase is proportional to flux increase. However, pressure increase was much faster than theoretical value in the pilot plant test. So it was suggested that flux was on important factor in ultrafiltration of continuous operation. Membrane fouling was decreased when linear velocity was increased. This phenomenon was found more obviously without coagulation. With the combination of coagulation and sedimentation, membrane fouling was not reduced conspicuously. Big particles formed during coagulation and sedimentation were destroyed by feed and circulation pumping, which resulted in little effect on membrane fouling reduction. The degree of destruction was similar at various linear velocities. In this study, the hollow fiber membrane was used and the system was operated in pressure type module. In case of the system used in this study, membrane fouling has been affected lightly by linear velocity variation when coagulation pretreatment was applied.

A simulation study on synthesis gas process optimization for FT(Fischer-Tropsh) synthesis (FT(Fischer-Tropsh) 합성유 제조를 위한 합성가스 공정 최적화 연구)

  • Kim, Yong-Heon;Lee, Won-Su;Lee, Heoung-Yeoun;Koo, Kee-Young;Song, In-Kyu
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.888-888
    • /
    • 2009
  • A simulation study on SCR (Steam Carbon dioxide Reforming) process in gas-to-liquid (natural gas to Fischer-Tropsch synthetic fuel) process was carried out in order to find optimum reaction conditions for GTL (gas-to-liquid) process reaction. Optimum SCR operating conditions for synthesis gas to FT (Fischer-Tropsch) process were determined by changing reaction variables such as feed temperature and pressure. During the simulation, overall synthesis process was assumed to proceed under steady-state conditions. It was also assumed that physical properties of reaction medium were governed by RKS (Redlich-Kwong-Soave) equation. SCR process was considered as reaction models for synthesis gas in GTL proess. The effect of temperature and pressure on SCR process $H_2$/CO ratio and the effect of reaction pressure on SCR reaction were mainly examined. Simulation results were also compared to experimental results to confirm the reliability of simulation model. Simulation results were reasonably well matched with experimental results.

  • PDF

Basic Design of High Pressure LOx Lines for a Liquid Rocket Engine (액체로켓엔진 액체산소 고압 배관부 기본설계)

  • Moon, Il-Yoon;Yoo, Jae-Han;Moon, In-Sang
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.107-110
    • /
    • 2009
  • A basic design for a Technical Development Model (TDM) of liquid oxygen lines from the turbopump exit to the oxidizer valves of the combustion chamber and the gas generator was conducted to develop a turbopump-fed liquid rocket engine. The TDM is composed of straight lines, elbows, bellows, a branch, an orifice, flanges and a heat insulator. Materials were determined by consideration of operation conditions, weight constraint and manufacturing procedures. The size and the location of each component were determined by flow analysis of the required flowrate and the pressure loss. Basic designs of the components were conducted by consideration of the operating temperature and the maximum expectation operating pressure. The safety factors were evaluated by structural analysis of design of each component.

  • PDF

A Study on the Shell Wall Thinning by Flow Acceleration Corrosion and Mitigation Plan and Design Modification of a Feedwater Heater Impingement Baffle (유동가속부식으로 인한 급수가열기 동체 감육현상 규명과 완화 방안 및 충격판 설계개선에 관한 연구)

  • Kim, Kyung-Hoon;Hwang, Kyeong-Mo;Kim, In-Tae
    • Journal of ILASS-Korea
    • /
    • v.15 no.2
    • /
    • pp.83-93
    • /
    • 2010
  • Feedwater heaters of many nuclear power plants have recently experienced severe wall thinning damage, which will increase as operating time progresses. Several nuclear power plants in Korea have experienced wall thinning damage in the area around the impingement baffle inside feedwater heater installed downstream of the turbine extraction stream line. At that point, the extract steam from the turbine is two phase fluid at high temperature, high pressure, and high speed. Since it flows to reverse direction after impinging the impingement baffle, the shell wall of feedwater heaters may be affected by flow-accelerated corrosion. In this paper, to compare degree of shell wall thinning mitigation rate to squared type with mitigation rate of other type baffle plate, four different types of impingement baffle plate-squared, curved, mitigating type and multi-hole type-applied inside the shell. With these comparison data, this paper describes operation of experiments and numerical analysis which is composed similar condition with real feed water heater. And flow visualization is operated for verification of experiments and numerical analysis. In conclusion, this study shows that mitigating type and multi-hole type baffle plate are more effective than other baffle plate about prevention of pressure concentration and pressure value decrease.

Thickening Characteristics of Activated Sludge by Air Flotation Process (공기부상법을 이용한 활성슬러지의 부상분리 특성)

  • Park, Chanhyuk;Hong, Seok-won;Maeng, Juwon;Lee, Sanghyup;Choi, Yong-su;Moon, Seong-yong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.20 no.5
    • /
    • pp.747-753
    • /
    • 2006
  • Air flotation is a solid-liquid separation process that utilizes up-flow microbubbles to thicken activated sludge and enhance clarification efficiency. Continuous air flotation experiments were performed to investigate the effect of operation parameters such as initial MLSS (mixed liquor suspended solid) concentration, air pressure, surface loading rate, air to solid (A/S) ratio, and flotation time on thickening efficiency. An initial activated sludge concentration ranged from 3,000 to 12,000mgSS/L and thickened sludge concentration varied from 6,400 to 28,100mgSS/L. The result showed that the thickening efficiency was mainly dependent on surface loading rate, A/S ratio, and flotation time. The pressure did not affect the thickening efficiency when it kept in the range of 1.6 to 1.8 bar. Experimental results showed that the thickening efficiency of activated sludge was increased only when the feed sludge concentration exceeded 5,000mgSS/L and the thickened concentration was over 20,000mgSS/L. At this time, SS concentration in the clarified liquid was ranged from 5 to 10mg/L.

An Experimental Study of Shell and Tube Heat Exchanger Performance with Baffle Spacing (배플수에 따른 원통다관형 열교환기 성능에 관한 실험 적 연구)

  • Lee, Yuk-Hyeong;Kim, Sun-Yeong;Park, Myeong-Gwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.12
    • /
    • pp.1748-1755
    • /
    • 2001
  • The shell and tube heat exchangers were introduced to apply to a big capacity condenser and a high pressure feed water heater for power plant in the beginning of 1990s. Design and manufacturing technology fur shell and tube heat exchangers have been developed until now. But it is very difficult to calculate the expected performance characteristics of the shell and tube heat exchanger, because there are many design parameters to be considered according to internal structure and the shell side heat transfer mechanism complicately related to the design parameters. Design parameters to be considered in the design stage of shell and tube heat exchanger are shell and tube side fluids, flow rate, inlet and outlet temperature, physical properties, type of heat exchanger, outer diameter, thickness, length of tube, tube arrangement, tube pitch, permissive pressure loss on both sides, type of baffle plate, baffle cutting ratio. The propose of study is an analysis TEMA(Tubular Exchanger Manufacturers Association) E shell and tube heat exchanger performance with changing a number of baffles(3, 5, 7, 9, 11) and tubes(16, 20) and determined optimal baffle spacing.

Measurement of Liquid Entry Pressure of PE and PVDF Hollow Fiber Membranes in Membrane Distillation Process (막증류 공정에서 PE 및 PVDF 중공사막의 액체투과압력 측정에 관한 연구)

  • Min, Ji Hee;Park, Min Soo;Kim, Jinho
    • Membrane Journal
    • /
    • v.25 no.3
    • /
    • pp.216-222
    • /
    • 2015
  • The method measuring LEP (liquid entry pressure) was optimized to evaluate the wettabilities of hydrophobic membranes which might affect long-term durability of membrane in MD (membrane distillation) process. Conductivity of the permeate was monitored to measure the LEPs of PE (polyethylene) and PVDF (polyvinylidene di-fluoride) hollow fiber membranes from highly concentrated synthetic feed water of 20 wt% NaCl. Holding time over 5 min and the ratio of membrane area to the tank volume more than $10m^2/m^3$ were required to ensure LEP value.