Journal of the Korean Institute of Intelligent Systems
/
v.10
no.5
/
pp.449-458
/
2000
In this paper, we propose a feed identification method using neural network to predict feed in crude distillation unit. The proposed FINN(feed identifier by neural network) is functionally composed of two modes-training mode and prediction mode. Also, we implement a neural network-based soft sensor system using Borland C++(3.0) Builder. The effectiveness of the proposed neural network-based feed identification method is shown by simulation results.
The Journal of Korean Institute of Electromagnetic Engineering and Science
/
v.20
no.5
/
pp.413-420
/
2009
We propose a novel feed network for a $2{\times}2$ array antenna to form a sectoral conical beam. The proposed feed network, which is a symmetrical structure, consists of four $90^{\circ}$ hybrids, a crossover, and four $90^{\circ}$ delay lines. To verify the performance of the feed network a $2{\times}2$ array antenna and the feed network are fabricated on a microstrip structure, and the radiation patterns are measured at the center frequency of 2.57 GHz. The maximum radiation is measured at the $45^{\circ}$ elevation angle and at the $45^{\circ}$, $135^{\circ}$, $225^{\circ}$, and $315^{\circ}$ azimuth angles depending on the choice of the input port of the feed network.
P2P systems have gained a lot of research interests and popularity over the years and have the capability to unleash and distribute awesome amounts of computing power, storage and bandwidths currently languishing - often underutilized - within corporate enterprises and every Internet connected home in the world. Since there is no central control over resources or devices and no before hand information about the resources or devices, device discovery remains a substantial problem in P2P environment. In this paper, we cover some of the current solutions to this problem and then propose our feed forward neural network (FFNN) based solution for device discovery in mobile P2P environment. We implements feed forward neural network (FFNN) trained with back propagation (BP) algorithm for device discovery and show, how large computation task can be distributed among such devices using agent technology. It also shows the possibility to use our architecture in home networking where devices have less storage capacity.
The Journal of Korean Institute of Electromagnetic Engineering and Science
/
v.19
no.8
/
pp.927-932
/
2008
We propose a novel $4{\times}4$ Hadamard matrix feed network for a $4{\times}1$ array antenna to form a dual beam. If each element of the array is excited following the elements in a row of the Hadamard matrix, a two-lobed antenna beam can be obtained. The angle between the two lobes can be controlled. The Hadamard matrix feed network consists of four $90^{\circ}$ hybrids, a crossover and four $90^{\circ}$ phase shifters. The array, including the Hadamard matrix feed network, was fabricated on a microstip structure. The measured beam directions of the two lobes are $0^{\circ}$, ${\pm}15^{\circ}$, ${\pm}33^{\circ}$, ${\pm}45^{\circ}$ depending on the choice of the input port of the feed network.
Understanding actions in videos is an important task. It helps in finding the anomalies present in videos such as fights. Detection of fights becomes more crucial when it comes to sports. This paper focuses on finding fight scenes in Hockey sport videos using blur & radon transform and convolutional neural networks (CNNs). First, the local motion within the video frames has been extracted using blur information. Next, fast fourier and radon transform have been applied on the local motion. The video frames with fight scene have been identified using transfer learning with the help of pre-trained deep learning model VGG-Net. Finally, a comparison of the methodology has been performed using feed forward neural networks. Accuracies of 56.00% and 75.00% have been achieved using feed forward neural network and VGG16-Net, respectively.
The Journal of Korean Institute of Electromagnetic Engineering and Science
/
v.24
no.4
/
pp.426-435
/
2013
In this paper, we propose the MIMO circular polarization feed network to enhance the communication performances from the previous $2{\times}2$ MIMO channel to $4{\times}4$ channel for Land Mobile Satellite communication system. The only possibility to extend the communication channel is to use the additional satellite because of the limitation of satellite spaces to install additional antennas. For overcoming this problems, we propose the MIMO circular polarization feed network to secure the isolation characteristics without the distant antenna space. The port isolation characteristics and each port impedance matching conditions are numerically verified and we suggest the $4{\times}4$ MIMO channel model of the proposed system and the performances are verified. The fabricated circular polarization patch antennas with the proposed feed network are measured in the reverberation chamber and 7~10 dB of diversity gain and 80 % increasement of channel capacity are obtained.
Journal of the Institute of Electronics Engineers of Korea SD
/
v.45
no.1
/
pp.20-27
/
2008
In this paper, a nonlinear classifier of a feed-forward neural network is implemented on an FPGA chip. The feedforward neural network is implemented in hardware for fast parallel processing. After off line training of neural network, weight values are saved and used to perform forward propagation of neural processing. As an example, AND and XOR digital logic classification is conducted in off line, and then weight values are used in neural network. Experiments are conducted successfully and confirmed that the FPGA neural network hardware works well.
In this paper, the cause of the discrepancy of the inlet and outlet flow of the lubricating oil feed pump was analyzed by the flow measurement and the analysis of the flow network. At first, we thought that the flow difference was induced by a leak in the middle of the flow network. But, through the flow measurement using ultrasonic flow meter and the performance analysis of the pump, we knew that the cause of the flow difference was due to a drop in efficiency of the pump according to the pressure drop of the outlet. Also, we knew that the shape of the piping had no effect on the efficiency of the pump.
Proceedings of the Korean Society of Propulsion Engineers Conference
/
2008.03a
/
pp.732-736
/
2008
The traditional method to calculate the gravity feed is to assume that only one tank in fuel system supplies the needed fuel to the engine, and then calculated for the single branch. Actually, all fuel tanks compete for supplying oil. Our method takes into consideration all fuel tanks and therefore, we believe, our method is intrinsically superior to traditional methods and is closer to understanding the real seriousness of the oil supply situation. Firstly, the thesis gives the mathematical model for fuel flow pipe, pump, check valve and the simulation model for fuel tank. On the basis of flow network theory and time difference method, we established a new calculation method for gravity feed oil of aeroplane fuel system, secondly. This model can solve the multiple-branch and transient process simulation of gravity feed oil. Finally, we give a numerical example for a certain type of aircraft, achieved the variations of oil level and flow mass per second of each oil tanks. In addition, we also obtained the variations of the oil pressure of the engine inlet, and predicted the maximum time that the aeroplane could fly safely under gravity feed. These variations show that our proposed method of calculations is satisfactory.
It is known that restructuring feed-forward neural network affects generalization capability and efficiency of the network. In this paper, we introduce a new approach to restructure a neural network using abstraction of the hidden knowledge that the network has teamed. This method involves extracting local rules from non-input nodes and aggregation of the rules into global rule base. The extracted local rules are used for pruning unnecessary connections of local nodes and the aggregation eliminates any possible redundancies arid inconsistencies among local rule-based structures. Final network is generated by the global rule-based structure. Complexity of the final network is much reduced, compared to a fully-connected neural network and generalization capability is improved. Empirical results are also shown.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.