• Title/Summary/Keyword: Fed-batch

Search Result 451, Processing Time 0.031 seconds

Production of $\beta$-Galactosidase from Alkalophilic, Thermophilic Baillus sp. TA-11 (호알칼리성, 고온성 Bacillus sp. TA-11에 의한 $\beta$-Galactosidase의 생산)

  • 최영준;이종수
    • KSBB Journal
    • /
    • v.9 no.4
    • /
    • pp.400-405
    • /
    • 1994
  • The conditions for ${\beta}$-galactosidase production from alkalophilic, thermophilic Bacillus sp. TA-11 were investigated. The maximal enzyme production was obtained when the strain was cultured at $50^{\circ}C$ for 5 days with fed-batch culture in the optimal medium containing 1.5% lactose, 0.6% yeast extract 0.15% $K_2HP0_4$and initial pH 9.5, and then final enzyme activity under the above conditions was 5200 unit/ml of cell free extract.

  • PDF

Nitrate Removal in a Packed Bed Reactor Using Volatile Fatty Acids from Anaerobic Acidogenesis of Food Wastes

  • Lim, Seong-Jin;Ahn, Yeong-Hee;Kim, Eun-Young;Chang, Ho-Nam
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.11 no.6
    • /
    • pp.538-543
    • /
    • 2006
  • A packed bed reactor (PBR) was fed with nitrate containing synthetic wastewater or effluent from a sequencing batch reactor used for nitrification. The C source introduced into the PBR consisted of volatile fatty acids (VFAs) produced from anaerobic acidogenesis of food wastes. When nitrate loading rates ranged from $0.50\;to\;1.01\;kg\;N/m^{3}{\cdot}d$, the PBR exhibited $100{\sim}98.8%\;NO_{3}^{-}-N$ removal efficiencies and nitrite concentrations in the effluent ranged from $0\;to\;0.6\;NO_{2}^{-}-N\;mg/L$. When the PBR was further investigated to determine nitrate removal activity along the bed height using a nitrate loading rate less than $1.01\;kg\;N/m^{3}{\cdot}d$, 100% nitrate removal efficiency was observed. Approximately 83.2% nitrate removal efficiency was observed in the lower 50% of the packed-bed height. When reactor performance at a C/N ratio of 4 and a C/N ratio of 5 was compared, the PBR showed better removal efficiency (96.5%) of nitrate and less nitrite concentration in the effluent at the C/N ratio of 5. VFAs were found to be a good alternative to methanol as a carbon source for denitrification of a municipal wastewater containing 40 mg-N/L.

Lincomycin Production in the culture of Streptomyces lincolnensis using crude soybean oil in air lift bioreactor

  • Cho, Ki-An;Cho, Hoon
    • Journal of environmental and Sanitary engineering
    • /
    • v.23 no.2
    • /
    • pp.27-33
    • /
    • 2008
  • Using crude soybean oil as the sole carbon source, the lincomycin production from Streptomyces lincolnensis LC 345 was investigated in the air lift bioreactor. When 30 g/L of crude soybean oil was used, the maximum lincomycin concentration reached 0.89 g/L, after 5 days of culture. When CSL concentration was increased from 10 to 30 g/L, Lincomycin concentration was increased from 0.6 to 1.2. On the other hand, when CSL concentration was increased from 40 to 60 g/L, it was decreased from 1.15 to 0.7 g/L. Using these results, fed batch cultures for comparing the use of crude soybean oil and glucose as a conventional carbon source were carried out in a 5 L air lift bioreactor. When crude soybean oil was used as the sole carbon source, the maximum lincomycin concentration was 2.0 g/L, which was about 2.0 fold higher than that of glucose medium after 7 day of culture. The product yield from olive oil was 0.042 g/g consumed carbon source, which was about 3.8 fold higher than that of glucose.

Single Cell Oil Production from Undetoxified Arundo donax L. hydrolysate by Cutaneotrichosporon curvatus

  • Di Fidio, Nicola;Liuzzi, Federico;Mastrolitti, Silvio;Albergo, Roberto;De Bari, Isabella
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.2
    • /
    • pp.256-267
    • /
    • 2019
  • The use of low-cost substrates represents one key issue to make single cell oil production sustainable. Among low-input crops, Arundo donax L. is a perennial herbaceous rhizomatous grass containing both C5 and C6 carbohydrates. The scope of the present work was to investigate and optimize the production of lipids by the oleaginous yeast Cutaneotrichosporon curvatus from undetoxified lignocellulosic hydrolysates of steam-pretreated A. donax. The growth of C. curvatus was first optimized in synthetic media, similar in terms of sugar concentration to hydrolysates, by applying the response surface methodology (RSM) analysis. Then the bioconversion of undetoxified hydrolysates was investigated. A fed-batch process for the fermentation of A. donax hydrolysates was finally implemented in a 2-L bioreactor. Under optimized conditions, the total lipid content was 64% of the dry cell weight and the lipid yield was 63% of the theoretical. The fatty acid profile of C. curvatus triglycerides contained 27% palmitic acid, 33% oleic acid and 32% linoleic acid. These results proved the potential of lipid production from A. donax, which is particularly important for their consideration as substitutes for vegetable oils in many applications such as biodiesel or bioplastics.

Nitroglycerin Biodegradation under Denitrification Conditions and Corresponding Microbial Community Shifts upon Acclimation (탈질조건에서 nitroglycerin의 생물학적 분해 동역학 및 미생물 군집 변화)

  • Choi, Wonchul;Bae, Bumhan
    • Journal of Soil and Groundwater Environment
    • /
    • v.24 no.5
    • /
    • pp.42-54
    • /
    • 2019
  • Biodegradation of an explosive compound, glyceryl trinitrate (GTN), was studied with a denitrifying microbial culture grown in a sequencing batch reactor and a GTN acclimated denitrifying culture. The GTN acclimated culture, which were fed on GTN for 1 month, degraded GTN regioselectively via denitration on C1 position as compared to C2 position denitration by denitrifying culture that has never been exposed to GTN. Accumulation of two isomeric glyceryl dinitrates (GDNs) in both culture medium suggests that GDN denitration is the rate-limiting step in GTN biodegradation. The first order GTN degradation rate normalized to cell concentration of the acclimated culture was calculated to be 0.045 (${\pm}0.002$) L/g-hr. Increasing concentration of electron acceptor(nitrate) resulted in discouraged GTN degradation. According to microbial community analysis, prolonged GTN exposure resulted in 25% increase in the genus level of the GTN acclimated culture with the disappearance of two dominating denitrifying microbial species of Methyloversatilis universalis and Hyphomicrobium zavarzinii in the denitrifying culture.

The Overall Performance Improvement of Microbial Fuel Cells Connected in Series with Dairy Wastewater Treatment

  • Choudhury, Payel;Bhunia, Biswanath;Bandyopadhyay, Tarun Kanti;Ray, Rup Narayan
    • Journal of Electrochemical Science and Technology
    • /
    • v.12 no.1
    • /
    • pp.101-111
    • /
    • 2021
  • To improve the potential of single chamber microbial fuel cells (SCMFCs) as an applicable technology, the main challenge is a practical application for larger scales bioenergy production from potent exoelectrogenic microorganism with real dairy wastewater. To increase power generation, three individual MFCs were together operated in series best under the fed batch condition for 15 days. The volume of MFC 1 and MFC 2 is "300 mL" and MFC 3 is "500 mL" respectively. The individual MFCs 1, MFC 2 and MFC 3 gives an open circuit voltage of 0.60 V, 0.66 V and 0.55 V and result in total working voltage when connected in series of 1.745V, which lead an LED to glow. The maximum power densities obtained from MFC 1, MFC 2 and MFC 3 are 62 mW/㎡, 50 mW/㎡ and 45 mW/㎡ (normalized to the surface area of the anodic electrode, which was 50 ㎠ for all three MFCs), and corresponding to current densities of 141 mA/㎡, 155 mA/㎡ and 123 mA/㎡, respectively. Therefore this work suggests the cheapest way to connect microbial fuel cells in series to gain power with the lowest operating cost and chemical oxygen demand (COD) removal.

Cultivation Condition of Transformant Alcaligenes eutrophus Harboring Cloned phbC Gene for Production of P(3-hydroxybutyrate-3-hydroxyvalernte) Containing High Molar Fraction of 3-Hydroxyvalerate. (P(3-hydroxybutyrate-3-hydroxyvalerate)의 생산을 위한 재조합 phbC 유전자를 형질전환시킨 Alcaligenes eutrophus의 배양조건 검토)

  • 권순일;정영미;이용현
    • Microbiology and Biotechnology Letters
    • /
    • v.26 no.6
    • /
    • pp.537-544
    • /
    • 1998
  • The cultivation conditions of transformant Alcaligenes eutrophus AER5 harboring cloned phbC gene for mass production of poly (3-hydroxybutyrate-3-hydroxyvalerate)[P(3HB-3HV)] containing high molar fraction of 3-hydroxyvalerate (3-HV) were investigated. In two-stage batch cultivation, transformant accumulated P(3HB-3HV) containing 52.2 mol% of 3HV compared to 30 mol% of parent strain A. eutrophus H16. The increased 3-HV molar fraction was due to the amplified activity of PHB synthase participating in condensation of 3-HB and 3-HV. To increase efficiency of P(3HB-3HV) accumulation, fructose was added along with precursor compound valerate, and total cell mass and P(3HB-3HV) concentrations remarkably increased, but not 3-HV molar fraction. The effect of magnesium ion showed that P(3HB-3HV) concentration and 3-HV molar fraction were significantly increased upto 6.1 g/L and 71.3 mol% at 0.01 g/L of MgSO$_4$, respectively. The efficiency of several pH adjuster, NaOH, NaOH and (NH$_4$)$_2$SO$_4$, and NH$_4$OH, on total cell mass, p(3HB-3HV) concentration, and 3-HV molar fraction was also compared. To overcome the disadvantage of two-stage cultivation, one-stage intermittent fed-batch cultivation was attempted, such a way 10.0 g/L of fructose was supplied for cell growth at initial 36 hr and then 10.0 g/L of valerate and 5.0 g/L of fructose were applied to induce the accumulation of P(3HB-3HV), consequently, 10.4 g/L of P(3HB-3HV) with 38 mol% of 3-HV fraction could be obtained after 72 hr. These results can be used for elucidating cultivation strategy for mass production of P(3HB-3HV) containing high 3-HV molar fraction using transformant A. eutrophus AER5 harboring cloned phbC gene.

  • PDF

Evaluation of biological treatment of cutting-oil wastes using sequencing batch reactor (SBR) process (연속 회분식 반응조 (SBR) 공정을 이용한 폐절삭유의 생물학적 처리능 평가)

  • Baek, Byung-Do;Kim, Chang-Seop;Kim, Jun-Young;Chang, In-Soung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.7
    • /
    • pp.1654-1660
    • /
    • 2009
  • Two different cutting-oils from H and B companies which are sold as an eco-friendly cutting-oils were selected and the biodegradability of these commercially available cutting-oils was evaluated by the sequencing batch reactor (SBR) processes. The cutting-oil wastes ($H_1$) pre-treated by coagulation/flocculation was used as an influent to SBR. When the F/M ratio was operated 0.04 to 0.08kgCOD/kgMLSS d, removals of $BOD_5$and $COD_{Cr}$were above 97% and 91%, respectively. T-N and T-P removals were above 76% and 81%, respectively. If the diluted cutting-oil wastes ($B_1$) was used as an influent of the SBR, $COD_{Cr}$removals were above 77% at the F/M ratio of 0.01-0.02kgCOD/kgMLSS d. After the cutting-oil wastes was treated by coagulation/ flocculation ($B_2$), $COD_{Cr}$removals was above 85%. If the pre-treated cutting-oil wastes were mixed with a synthetic wastewater ($B_3$) and fed into the SBR in order to mimic the real wastewater treatment plant situation, $BOD_5$and $COD_{Cr}$removals were above 97%, 91%, respectively. T-N and T-P removals were above 79% and 76%. The ratio between $BOD_5$and $COD_{Cr}$, ($COD_{Cr}$-$BOD_5$)/$COD_{Cr}$, indicating the biodegradability of effluent of the SBR, was calculated to 85% and 61%. This means that significant amounts of non-readily-biodegradable organic compounds in the effluent of $H_1$, $B_3$are still present.

Microbial Communities of Activated Sludge in an Anaerobic/Aerobic Sequencing Batch Reactor using Slot Hybridization (Slot Hybridization을 이용한 연속 회분식 반응기내 미생물 분포 조사)

  • Jeon, Che Ok;Shin, Kum-Joo;Lee, Dae Sung;Suh, Pann-Ghill;Park, Jong Moon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.5
    • /
    • pp.939-947
    • /
    • 2000
  • Enhanced biological phosphorus removal (EBPR) was performed in an anaerobic/aerobic sequencing batch reactor (SBR). Influent was a synthetic wastewater based on acetate as a carbon source. The sludge age and hydraulic retention time were kept at 10 days and 16 hrs, respectively, Phosphate release during the anaerobic period and phosphate uptake in aerobic period were increased gradually with time. and after about 200 days, steady-state operation could be achieved with complete removal of influent phosphate. Number distribution of microbial community in the sludge performing EBPR was investigated during the steady state operation. 17 rRNA targeted oligonucleotide probes were designed and slot hybridization technique was used to determine the number distribution of each microorganism. In the acetate fed SBR, rRNA belonging to the beta subclass of proteobacteria was the most dominant in total rRNA and rRNA matching to CTE probe was the second, rRNAs of Acinetobacter, Aeromonas and Pseudomonas, which are usually thought as phosphorus accumulating organisms in EBPR processes, constituted less than 10% of total rRNA. From this community analysis, it was inferred that microorganisms belong to the beta subclass of proteobacteia (BET) and CTE such as Rhodocyclus group were important in biological phosphorus removal. Therefore, the role of Acinetobacter, Aeromonas and Pseudomonas in the EBPR might have been overestimated.

  • PDF

Production of L-Lactic Acid from Soluble Starch by Enterococcus sp. JA-27. (Enterococcus sp. JA-27에 의한 가용성 전분으로부터 L형 젖산의 생산)

  • 김경아;김미경;장경린;전홍기
    • Microbiology and Biotechnology Letters
    • /
    • v.31 no.3
    • /
    • pp.250-256
    • /
    • 2003
  • Lactic acid bacteria with amylolytic and acid producing activities can ferment starch directly to lactic acid thereby producing a monomer for the production of biodegradable poly lactic acid (PLA). In this study, the strain producing L-lactic acid from soluble starch was isolated from Nuruk. The isolated strain was identified as Enterococcus sp. through its morphological, cultural, biochemical characteristics as well as the 16S rDNA sequence analysis, and named Enterococcus sp. JA-27. Enterococcus sp. JA-27 produced exclusively L-lactic acid from soluble starch as a carbon source. The optimal conditions for the maximum production of L-lactic acid from Enterococcus sp. JA-27 were 30 C, pH 8, 1.5 % soluble starch as a substrate and 3.5 % tryptone as a nitrogen source, 0.1 % $K_2$$HPO_4$, 0.04 % $MgSO_4$. $7H_2$O, 0.014 % $MnSO_4$$.$4$H_2O$, 0.004% $FeSO_4$$.$$7H_2$O. Batch and fed batch culture were carried out and the former was more effective. L-Lactic acid production in the optimum medium was significantly increased in a 7 L jar fermenter, where the maximum L-lactic acid concentration was 3 g/L. For the purification of lactic acid in fermented broth, two stage ionexchange column chromatographies were employed and finally identified by HPLC.