• Title/Summary/Keyword: Fed-batch

Search Result 448, Processing Time 0.025 seconds

Biosynthesis of Chondroitin in Engineered Corynebacterium glutamicum

  • Cheng, Fangyu;Luozhong, Sijin;Yu, Huimin;Guo, Zhigang
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.3
    • /
    • pp.392-400
    • /
    • 2019
  • Chondroitin, the precursor of chondroitin sulfate, which is an important polysaccharide, has drawn significant attention due to its applications in many fields. In the present study, a heterologous biosynthesis pathway of chondroitin was designed in a GRAS (generally recognized as safe) strain C. glutamicum. CgkfoC and CgkfoA genes with host codon preference were synthesized and driven by promoter Ptac, which was confirmed as a strong promoter via GFPuv reporter assessment. In a lactate dehydrogenase (ldh) deficient host, intracellular chondroitin titer increased from 0.25 to 0.88 g/l compared with that in a wild-type host. Moreover, precursor enhancement via overexpressing precursor synthesizing gene ugdA further improved chondroitin titers to 1.09 g/l. Chondroitin production reached 1.91 g/l with the engineered strain C. glutamicum ${\Delta}L-CgCAU$ in a 5-L fed-batch fermentation with a single distribution $M_w$ of 186 kDa. This work provides an alternative, safe and novel means of producing chondroitin for industrial applications.

Microcomputer-aided Fermentation System for High Density Fed-Batch Cultivation (마이크로컴퓨터를 이용한 고농도 유가배양시스템)

  • 이형준;이계호허윤행
    • KSBB Journal
    • /
    • v.5 no.3
    • /
    • pp.307-313
    • /
    • 1990
  • A microcomputer-aided fermentation system was constructed for high density fed-batch culture using dissolved oxygen(DO) as a substrate feeding indicator. DO signal was processed prior to aquisition to computer. Agitation speed and oxygen flow rate was changed stepwisely to maintain DO value at a constant level. Agitation speed was controlled by the output signal of D/A converter. Oxygen flow rate was controlled by a flow rate control valve connected to a stepping motor. Substrate was fed with a feeding pump operated by the abrupt increase of DO signal. Methylobacillus sp. SK1 was cultivated to test the system and 16.53g/l of cell density was obtained after 10 hr.

  • PDF

Effect of Galactose Feeding Strategy on Heterologous Human Lipocortin-I Production in the Fed-Batch Culture of Saccharomyces cerevisiae Controlled by the GAL10 Promoter

  • Chung, Bong-Hyun;Kim, Byung-Moon;Rhee, Sang-Ki;Park, Young-Hoon;Nam, Soo-Wan
    • Journal of Microbiology and Biotechnology
    • /
    • v.5 no.4
    • /
    • pp.224-228
    • /
    • 1995
  • Fed-batch fermentations were conducted to produce human lipocortin-I (LC1), a potential anti-inflammatory agent, from recombinant Sacchromyces cerevisiae carrying a galactose-inducible expression system. The cell growth, expression level of LC1, and the plasmid stability were investigated under various LC1 induction modes performed by three different galactose feeding strategies. Galactoe was fed to induce the expression of LCl from the beginning (initial induction) of culture or when the cell concentration reached 120 OD (mid-phase induction) or 300 OD (late induction). Among the three galactose-induction modes tested, the initial induction mode yielded the best result with respect to a final expression level of LC1. Fedbatch fermentation with initial induction mode produced LC1 at a conentration of 220 mg/l, which corresponded to 1.38- and 1.53-fold increases over those produced by mid-phase and late induction modes.

  • PDF

Effects of Dissolved Oxygen on Fungal Morphology and Process Rheology During Fed-Batch Processing of Ganoderma lucidum

  • Fazenda, Mariana L.;Harvey, Linda M.;McNeil, Brian
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.4
    • /
    • pp.844-851
    • /
    • 2010
  • Controlling the dissolved oxygen (DO) in the fed-batch culture of the medicinal mushroom Ganoderma lucidum led to a 2-fold increase of the maximum biomass productivity compared with uncontrolled DO conditions. By contrast, extracellular polysaccharide (EPS) production was two times higher under oxygen limitation (uncontrolled DO) than under increased oxygen availability (controlled DO). Morphologically, dispersed mycelium was predominant under controlled DO conditions, with highly branched hyphae, consistent with the enhanced culture growth noted under these conditions, whereas in the uncontrolled DO process mycelial clumps were the most common morphology throughout the culture. However, in both cultures, clamp connections were found. This is an exciting new finding, which widens the applicability of this basidiomycete in submerged fermentation. In rheological terms, broths demonstrated shear-thinning behavior with a yield stress under both DO conditions. The flow curves were best described by the Herschel-Bulkley model: flow index down to 0.6 and consistency coefficient up to 0.2 and 0.6 Pa $s^n$ in uncontrolled and controlled cultures DO, respectively. The pseudoplastic behavior was entirely due to the fungal biomass, and not to the presence of EPS (rheological analysis of the filtered broth showed Newtonian behavior). It is clear from this study that dissolved oxygen tension is a critical process parameter that distinctly influences G. lucidum morphology and rheology, affecting the overall performance of the process. This study contributes to an improved understanding of the process physiology of submerged fermentation of G. lucidum.

Fed-batch Culture of Recombinant E.coli for the Production of Penicillin G Amidase (Penicillin G Amidase생산을 위한 재조합 대장균의 유가배양에 관한 연구)

  • Lee, Sang-Mahn
    • Microbiology and Biotechnology Letters
    • /
    • v.36 no.4
    • /
    • pp.314-319
    • /
    • 2008
  • Penicillin G amidase (PGA, benzylpenicillinaminohydrolase, EC 3.5.1.11) is industrially important enzyme which converts penicillin G to 6-aminopenicillanic acid (6-APA) and phenylacetic acid (PAA). The PGA in E. coli ATCC 11105 is secreted into the periplasm after removing signal sequences and becomes heterodimer which composed of two subunits, small subunit (24 kDa) and large subunit (65 kDa). In this study, the PGA gene was obtained from E. coli ATCC 11105 using PCR (polymerase chain reaction) technique. The active PGA was successfully secreated into periplasm in E. coli BL2 1(DE3) harboring pET-pga plasmid. The optimized fed-batch fermentation, consisting of a three-step shift of culture temperature from $37^{\circ}C$ to $22^{\circ}C$, gave a productivity of 19.6 U/mL with a cell growth of 62 O.D. at 600 nm.

Efficient Production of ε-Poly-L-Lysine by Streptomyces ahygroscopicus Using One-Stage pH Control Fed-Batch Fermentation Coupled with Nutrient Feeding

  • Liu, Sheng-Rong;Wu, Qing-Ping;Zhang, Ju-Mei;Mo, Shu-Ping
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.3
    • /
    • pp.358-365
    • /
    • 2015
  • ε-Poly-L-lysine (ε-PL) is a homopolymer of L-lysine molecules connected between the epsilon amino and alpha carboxyl groups. This polymer is currently used as a natural preservative in food. Insufficient biomass is a major problem in ε-PL fermentation. Here, to improve cell growth and ε-PL productivity, various nitrogen-rich nutrients were supplemented into flask cultures after 16 h cultivation, marking the onset of ε-PL biosynthesis. Yeast extract, soybean powder, corn powder, and beef extract significantly improved cell growth. In terms of ε-PL productivity, yeast extract at 0.5% (w/v) gave the maximum yield (2.24 g/l), 115.4% higher than the control (1.04 g/l), followed by soybean powder (1.86 g/l) at 1% (w/v) and corn powder (1.72 g/l) at 1% (w/v). However, supplementation with beef extract inhibited ε-PL production. The optimal time for supplementation for all nutrients examined was at 16 h cultivation. The kinetics of yeast-extract-supplemented cultures showed enhanced cell growth and production duration. Thus, the most commonly used two-stage pH control fed-batch fermentation method was modified by omitting the pH 5.0-controlled period, and coupling the procedure with nutrient feeding in the pH 3.9-controlled phase. Using this process, by continuously feeding 0.5 g/h of yeast extract, soybean powder, or corn powder into cultures in a 30 L fermenter, the final ε-PL titer reached 28.2 g/l, 23.7 g/l, and 21.4 g/l, respectively, 91.8%, 61.2%, and 45.6% higher than that of the control (14.7 g/l). This describes a promising option for the mass production of ε-PL.

Efficient and Cost-Reduced Glucoamylase Fed-Batch Production with Alternative Carbon Sources

  • Luo, Hongzhen;Liu, Han;He, Zhenni;Zhou, Cong;Shi, Zhongping
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.2
    • /
    • pp.185-195
    • /
    • 2015
  • Glucoamylase is an important industrial enzyme. Glucoamylase production by industrial Aspergillus niger strain featured with two major problems: (i) empirical substrate feeding methods deteriorating the fermentation performance; and (ii) the high raw materials cost limiting the economics of the glucoamylase product with delegated specification. In this study, we first proposed a novel three-stage varied-rate substrate feeding strategy for efficient glucoamylase production in a 5 L bioreactor using the standard feeding medium, by comparing the changing patterns of the important physiological parameters such as DO, OUR, RQ, etc., when using different substrate feeding strategies. With this strategy, the glucoamylase activity and productivity reached higher levels of 11,000 U/ml and 84.6 U/ml/h, respectively. The performance enhancement in this case was beneficial from the following results: DO and OUR could be controlled at the higher levels (30%, 43.83 mmol/l/h), while RQ was maintained at a stable/lower level of 0.60 simultaneously throughout the fed-batch phase. Based on this three-stage varied-rate substrate feeding strategy, we further evaluated the economics of using alternative carbon sources, attempting to reduce the raw materials cost. The results revealed that cornstarch hydrolysate could be considered as the best carbon source to replace the standard and expensive feeding medium. In this case, the production cost of the glucoamylase with delegated specification (5,000 U/ml) could be saved by more than 61% while the product quality be ensured simultaneously. The proposed strategy showed application potential in improving the economics of industrial glucoamylase production.