• Title/Summary/Keyword: Fed batch

Search Result 451, Processing Time 0.042 seconds

Feasibility Study for Removal of Red Tide by Batch Fed Electron Beam Irradiation (회분식 전자빔 조사에 의한 적조제거 특성 연구)

  • Kang, Ho;Lim, Seon-Ae;Jeong, Ji-Hyun;Kim, Yu-Ri;Han, Beom-Su
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.3
    • /
    • pp.248-255
    • /
    • 2010
  • This study was carried out to assess the feasibility of the electron beam irradiation as a mean of red tide control in coastal water. Prorocentrum minimum, Prorocentrum micans, Cochlodinium polykrikoides, Heterosigma akashiwo, Alexnadrium catenella were selected and cultured for experiments, and red tide occurring in Tongyeong(2007. 8. 15) was also tested under the same conditions. The irradiation dose were 1 kGy, 2 kGy, 4 kGy and 8 kGy. The result showed 50~65% extinction in red tide cells was observed right after irradiation dose of 1 kGy and 86~97% within 1 day after irradiation, compared with control. Chlorophyll-a concentration of red tide was reduced by 50~64% immediately and it was drastically reduced up to 86~97% 1 day after irradiation. When the culture was irradiated at 1 kGy, 28~47% of s-protein was released immediately, and 77~138% was released 1day after irradiation. 77~212% of s-carbohydrate was excreted after 1 day while 16~45% of s-carbohydrate was excreted immediately. A transmission electron microscope(TEM) observation for the irradiated red tide revealed that the cell was destroyed and intracellular biopolymeric substance was leached out from the damaged cell as a result of electron beam irradiation. These results imply that electron beam irradiation is enable to control red tide by flocculation with extracellular biopolymer. The paralytic shellfish poisoning(PSP) toxin contents produced by Alexandrium catenella was decreased 48% by 1 kGy of electron beam irradiation compared with the unirradiated cells. As a result, electron beam irradiation was effective for detoxication as well as destruction of red tide.

Hyperproduction of L-Threonine by Adding Sodium Citrate as Carbon Source in Transformed Escherichia coli Mutant. (형질전환된 Escherichia coli변이주에서 Sodium citrate를 이용한 고농도 L-Threonine 생산)

  • 이만효;김병진;정월규;최선욱;박해룡;황용일
    • Journal of Life Science
    • /
    • v.14 no.5
    • /
    • pp.868-873
    • /
    • 2004
  • The efficient fermentative production of L-threonine fermentation was achieved by using Escherichia coli MT201, transformed a plasmid carrying pyruvate carboxylase gene. It is an attempt to supply oxaloacetate to the L-threonine biosynthetic pathway. In order to improve the L-threonine productivity of E. coli MT201, a plasmid pPYC which is an expression vector of the pyruvate carboxylase gene of Coryne-bacterium glutamicum, was introduced. When E. coli MT/pPYC was incubated with medium containing only glucose as a carbon source, both the cell growth and L-threonine production were reduced, compared to the results from fermentation of E. coli MT201. In order to circumvent this effect, we attempted the addition of a mixed carbon source, composed of glucose and sodium citrate at a ratio of 1.5:3.5. It was shown that L-threonine production and cell growth (OD660) with E. coli MT/pPYC reached up to 75.7 g/l and 48, respectively, at incubation for 75 hr under fed-batch fermentation conditions. It is assumed that overproduction of L-threonine by anaplerotic pathway leads unbalance of TCA cycle and sodium citrate might playa role to recover normal TCA cycle.

Effect of Cell Density on Xylitol Fermentation by Candida parapsilosis (Candida parapsilosis에 의한 Xylitol 생산시 균체농도가 미치는 영향)

  • Kim, Sang-Yong;Yoon, Sang-Hyun;Kim, Jung-Min;Oh, Deok-Kun
    • Korean Journal of Food Science and Technology
    • /
    • v.28 no.5
    • /
    • pp.970-973
    • /
    • 1996
  • Effect of cell density on the xylitol production from xylose by Candida parapsilosis KFCC 10875 was investigated. The concentrated cells were obtained by centrifugation of culture broth. The xylitol production rate was maximum at the cell concentration of 20 g/l and the specific xylitol production rate decreased when the cell concentration was increased due to oxygen limitation. Effect of the initial concentration of xylose on the xylitol production was also examined using the concentrated cells of 20 g/l. The xylitol production rate, specific xylitol production rate, and xylitol yield from xylose were maximum at 170 g/l xylose. Above 170 g/l xylose, the xylitol production rate was remarkably decreased. The concentrated cells could also be obtained by adjusting the dissolved oxygen (DO) during fermentation. The rapid accumulation of cells up to 20 g/l was achieved by maintaining an increased level of DO during the exponential growth phase and then, for the efficient xylitol production, the DO was changed to a low level in the range of 0.7-1.5%. A fed-batch fermentation of xylose by adjusting the DO level was carried out in a fermentor and the final xylitol concentration of 140 g/l from xylose of 200 g/l could be obtained for 56 h fermentation.

  • PDF

Quality Characteristics of High Acidity Apple Vinegar Manufactured Using Two Stage Fermentation (2단계 발효에 의한 고산도 사과식초의 품질특성)

  • Sung, Na-Hye;Woo, Seung-Mi;Kwon, Joong-Ho;Yeo, Soo-Hwan;Jeong, Yong-Jin
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.43 no.6
    • /
    • pp.877-883
    • /
    • 2014
  • This study investigated the manufacturing conditions of apple vinegar with high acetic acid content following fermentation according to alcohol concentration without any nutrients. We compared and analyzed the quality characteristics of high acetic acid fermentation by varying the initial alcohol content (6%, 7%, 8%, and 9%). In the results, it was possible to manufacture high acetic acid vinegar with 12% titratable acidity and an alcohol content of 6% and 7%. Lower initial alcohol content was associated with higher yield due to a shorter lag phase. For quality characteristics of the high acetic acid apple vinegar, pH was 2.91~3.20, titratable acidity was 12.0%, and organic acid consisted of acetic acid, malic acid, critic acid and oxalic acids. Based on the results, high acetic acid apple vinegar was produced using a two stage fermentation process after alcohol fermentation but the further research is needed to reduce the time of fermentation in fed-batch culture for industrial use.

Startup of Microbial Electrolysis Cells with different mixing ratio of Anaerobic Digested Sludge and Buffer solution (혐기성소화 슬러지 비율에 따른 미생물전기분해전지의 식종 특성)

  • Song, Geunwuk;Baek, Yunjeong;Seo, Hwijin;Jang, Hae-Nam;Chung, Jae Woo;Lee, Myoung-Eun;Ahn, Yongtae
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.27 no.4
    • /
    • pp.51-59
    • /
    • 2019
  • In this study, the influence of anaerobic digested sludge and 50 mM PBS (phosphate buffer solution) mixing ratio (1:1, 1:2, 1:3, 1:4, 1:5, 1:6, 1:7) on hydrogen production and inoculation period were examined. MECs were operated in fed-batch mode with an applied voltage of 0.9 V. As a result, in the 1:1 mixing ratio reactor, 9.8-20.9 mL of hydrogen was produced with the highest hydrogen content of 66.8-79.6%. Hydrogen gas production and power density increased from after 12 days of inoculation for the 1:1 mixing ratio reactor. In case of 1:2, 1:3 and 1:4 mixing ratio reactor, the hydrogen gas production was 3.7-7.1 mL and the hydrogen gas content was 5.8-65.8%. The hydrogen gas yield in 1:5, 1:6 and 1:7 ratio reactors, was 0.50-0.69 mL and hydrogen content range was 1.8-7.1%. The mixing ratio was found to be suitable for hydrogen production and inoculation period by mixing ratio up to 1:4.

Biogas Production from Sewage Sludge in 30L Microbial Electrolysis Cell (30L 미생물전기분해전지의 하수슬러지로부터 바이오가스 생산 특성)

  • Lee, Myoung-Eun;Ahn, Yongtae;Shin, Seung Gu;Seo, Sun-Chul;Chung, Jae Woo
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.27 no.4
    • /
    • pp.25-33
    • /
    • 2019
  • Operating characteristics of a 30 L microbial electrolysis cell (MEC) for producing biogas from sewage sludge was studied. During the 32-day inoculation period, carbon dioxide concentration decreased and methane concentration increased with operating time, and the overall methane content of biogas was 69.1% with a production rate of 171.6 mL CH4/L·d. In fed-batch experiments for 6 operating cycles, CH4 concentration of 66.5~77.2% was obtained at a production rate of 184.9~372.9 mL CH4/L·d, COD, TS and VS removal efficiency ranged from 28.2 to 42.1%, 20.7 to 37.5% and 18.5 to 36.9%, respectively. The MEC system was observed to be stabilized as operating cycles were repeated after inoculation. In the last operating cycle, 5221 mL/L of methane was produced with CH4 yield of 316.7 L CH4/kg CODrem, and the energy recovery was 73%.

The Effect of Prunus persica Batch var. davidiana Max. Hot-Water Extract on the Lipid Peroxide and Creatine Phosphokinase Activity in Streptozotocin-Induced Diabetic Rats (당뇨성 흰쥐의 과산화지질 및 Creatine Phosphokinase 활성에 돌복숭아(Prunus persica Batsch var. davidiana Max ) 열수 추출액이 미치는 영향)

  • Kim Han-Soo
    • The Korean Journal of Food And Nutrition
    • /
    • v.18 no.3
    • /
    • pp.272-278
    • /
    • 2005
  • The purpose of this study was designed to observe the effects of the Prunus persica Batsch var. davidiana Max. hot-water extract on the improvement of the glucide and lipid metabolism in the serum of streptozotocin (STZ, 55, mg/kg B.W., I.P. injection)-induced diabetic rats(S.D. strain, male) fed the experimental diets for 5 weeks. Electrolyte(Na, K, Cl) concentration in serum were fairly reduced in the group BSP(basal diet+STZ+Prunus persica $5.0g\%$ extract) than in the STZ(I.P.)-induced diabetic rats group(group BSW, basal diet+STZ(I.P.)+water). Although there was no significant difference among the groups. Concentrations of free fatty acid and lipid peroxide in serum were significantly higher in the STZ-induced diabetic group(group BSW) and STZ+Prunus persica $5.0;g\%$ extract group(group BSP) than those in the control group(group BW, basal diet+water). However, the concentrations of free fatty acid and lipid peroxide in serum were remarkably reduced in the group BSP than those in the group BSW, The activity of creatine phophokinase In serum was significantly lower in the group BSP than in the group BSW However, the activity of LCAT in serum was increased in the group BSP(Prunus persica $5.0\;g\%$ hot-water extract administration group) than in the STZ-induced diabetic group(group BSW). The above results shows that Prunus persica Batsch var. davidiana Max. were effective on the improvement of the glucide and lipid metabolism in serum of streptozotocin-induced diabetic rats.

Biological Dechlorination of Chlorinated Ethylenes by Using Bioelectrochemical System (생물전기화학시스템을 이용한 염화에틸렌의 생물학적 탈염소화)

  • Yu, Jaecheul;Park, Younghyun;Seon, Jiyun;Hong, Seongsuk;Cho, Sunja;Lee, Taeho
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.5
    • /
    • pp.304-311
    • /
    • 2012
  • Chlorinated ethylenes such as perchloroethylene (PCE) and trichloroethylene (TCE) are widely used as industrial solvents and degreasing agents. Because of improper handling, these highly toxic chlorinated ethylenes have been often detected from contaminated soils and groundwater. Biological PCE dechlorination activities were tested in bacterial cultures inoculated with 10 different environmental samples from sediments, sludges, soils, and groundwater. Of these, the sediment using culture (SE 2) was selected and used for establishing an efficient PCE dechlorinating enrichment culture since it showed the highest activity of dechlorination. The cathode chamber of bioelectrochemical system (BES) was inoculated with the enrichment culture and the system with a cathode polarized at -500 mV (Vs Ag/AgCl) was operated under fed-batch mode. PCE was dechlorinated to ethylene via TCE, cis-dichloroethylene, and vinyl chloride. Microbial community analysis with polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) showed that the microbial community in the enrichment culture was significantly changed during the bio-electrochemical PCE dechlorination in the BES. The communities of suspended-growth bacteria and attached-growth bacteria on the cathode surface are also quite different from each other, indicating that there were some differences in their mechanisms receiving electrons from electrode for PCE dechlorination. Further detailed research to investigate electron transfer mechanism would make the bioelctrochemical dechlorination technique greatly useful for bioremediation of soil and groundwater contaminated with chlorinated ethylenes.

Anaerobic Treatment of Leachate Solubilized from Thermal Hydrolysis of Sludge Cake (하수슬러지 케이크 열수분해 탈리액의 혐기성 분해 특성)

  • Kang, Ho;Oh, Baik-Yong;Shin, Kyung-Sook
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.37 no.10
    • /
    • pp.583-589
    • /
    • 2015
  • This study was performed to evaluate the feasibility of anaerobic pretreatment for the leachate solubilized from thermal hydrolysis of sewage sludge cake. Overall process for the treatment of sludge cake consists of thermal hydrolysis, crystallization of magnesium, ammonium, and phosphate (MAP) for the leachate and anaerobic digestion of supernatant from MAP crystallization. The experimental evidence showed that the optimum ratio of Mg : P for the struvite crystallization of leachate solubilized from thermal hydrolysis of sludge cake was 1.5 to 1.0 as weight basis at the pH of 9.5. With this operational condition, the removal efficiencies of ammonia nitrogen and phosphorous achieved 50% and 97%, respectively. The mesophilic batch test showed that the ultimate biodegradability of the supernatant from MAP crystallization reached 63% at S/I ratio of 0.5. The readily biodegradable fraction of 90% ($S_1$) of the MAP supernatant BVS (Biodegradable Volatile Solids, $S_0$) degraded with $k_1$ of $0.207day^{-1}$ for the initial 17 days where as the rest slowly biodegradable fraction ($S_2$) of 10% of BVS degraded with $k_2$ of $0.02day^{-1}$ for the rest of the operational period. Semi-Continuously Fed and Mixed Reactor (SCFMR) was chosen as one of the best candidates to treat the MAP supernatant because of its total solids content over 6%. Maximum average biogas production rates reached 0.45 v/v-d and TVS removal efficiency of 37~41% was achieved at an hydraulic retention time (HRT) of 20 days and its corresponding organic loading rate (OLR) of 1.43 g VS/L-d.

Effect of PVA-Encapsulation on Hydrogen Production and Bacterial Community Structure (수소 생산과 세균 군집구조에 미치는 PVA-포괄고정화의 영향)

  • Yun, Jeonghee;Kim, Tae Gwan;Cho, Kyung-Suk
    • Microbiology and Biotechnology Letters
    • /
    • v.42 no.1
    • /
    • pp.41-50
    • /
    • 2014
  • In this study, the performances of PVA-encapsulation and non-encapsulation in a fed-batch bioreactor system were compared for biohydrogen production. Hydrogen production in the PVA-encapsulation bioreactor was not significantly different in comparison to the non-encapsulation bioreactor. However, the hydrogen gas in the encapsulation bioreactor could be stably produced when it was exposed to environmental difficulties such as pH impact by the accumulation of organic acids as fermentative metabolic products. Bacterial communities by DGGE analysis were differently shifted between the PVA-encapsulation and non-encapsulation bioreactors from the initial sludge. The community of hydrogen producing bacteria was stable during the experimental period in the PVA-encapsulation bioreactor compared to the non-encapsulation method. The absolute quantitation of the DNA copy number by a high-throughput droplet digital PCR system for six genera contributed to hydrogen production showing that the numbers of dominant bacteria existed at similar levels in the two bioreactors regardless of encapsulation. In both of two bioreactors, not only Clostridium and Enterobacter, which are known as anaerobic hydrogen producing bacteria, but also Firmicutes, Ruminococcus and Escherichia existed with $1{\times}10^5-1{\times}10^6$ copy numbers of ml-samples exhibiting rapid growth during the initial operation period.