• Title/Summary/Keyword: Fed batch

Search Result 451, Processing Time 0.032 seconds

Simultaneous Overpexpression of Genes Encoding Cellulose- and Xylan-Degrading Enzymes through High Density Culture of a Recombinant Yeast Cell (재조합 효모 세포의 고농도배양을 통한 섬유소와 자일란 분해효소 유전자의 동시 과발현)

  • Kim, Yeon-Hee;Heo, Sun-Yeon;Kim, Gun-Do;Nam, Soo-Wan
    • Microbiology and Biotechnology Letters
    • /
    • v.46 no.4
    • /
    • pp.390-394
    • /
    • 2018
  • For the coexpression of endoxylanase and endoglucanase genes in yeast Saccharomyces cerevisiae, the genes were separately inserted downstream of the yeast ADH1 promoters, resulting the plasmid pAGX3 (9.83 kb). In the batch culture on YPD medium of the yeast transformant, S. cerevisiae SEY2102/pAGX3, the total activities of the enzymes reached about 7.91 units/ml for endoxylanase and 0.43 units/ml for endoglucanase. In the fed-batch culture with intermittent feeding of yeast extract and glucose, the total activities of 24.9 units/ml for endoxylanase and 0.84 units/ml for endoglucanase were produced which were about 3.1-fold and 2.0-fold increased levels, respectively, compared to those of the batch culture. Most of endoxylanase and endoglucanase activities were found in the extracellular media. This recombinant yeast could be useful for the development of simultaneous saccharification bioprocess of the cellulose and xylan mixture.

Enhancement of Alcohol Fermentation Yield by Adding the Extract of Dried Rehmannia glutinosa Liboschitz (건지황 추출물을 이용한 알콜 발효 수율 증진)

  • Ahn, Sang-Wook;Kim, Min-Hoe;Chung, Woo-Taek;Hwang, Baek;Seong, Nak-Sul;Lee, Hyeon-Yong
    • Korean Journal of Medicinal Crop Science
    • /
    • v.8 no.4
    • /
    • pp.351-361
    • /
    • 2000
  • The juice extract of Rehmannia glutinosa Liboschitz was used to improve the productivity of ethanol in alcohol fermentation process using a 5 L fermentor under batch and fed-batch cultivations. For batch cultivation, both cell density and ethanol production were increased as the extract of R. glutinosa was increased, showing 11.8 (g/L) of maximum cell density and 0.092 (% /hr) of maximum alcohol productivity in adding 30% (v/v) of the extract. However, in adding more than 40% of the extract both cell growth and ethanol production were dropped. The cell growth was severely inhibited in 50% addition. It was found that fed-batch cultivation in adding 30% of the extract of R. glutinosa was an effective process than batch cultivation, yielding up to 30% cell growth and ethanol production. This ethanol productivity was also 30-40% higher than that obtained from a conventional alcohol fermentation. It can tell that dried R. glutinosa Liboschitz is to be used for both enhancing the yield of alcohol fermentation and utilizing biologically active substances possibly transported from R. glutinosa Liboschitz into fermented broth.

  • PDF

Production of Itaconic Acid at Various Bioreactors (다양한 생물반응기에서 이타콘산의 생산)

  • 박승원;김승옥;이진석
    • Microbiology and Biotechnology Letters
    • /
    • v.22 no.3
    • /
    • pp.304-308
    • /
    • 1994
  • A suitable culture method and bioreactor type for itaconic acid production were chosen by comparing the maximal concentration of itaconic acid produced in various systems. In batch culture, the maximal concentration of itaconic acid produced in a bubble column reactor was about 5% greater than that produced in stirred-tank or external-loop airlift reactor. These results were thought to be due to lower shear force and higher mass transfer efficiency in a bubble column reactor in comparison with other reactors. Moreover, the fed-batch mode in a bubble column was found to be a suitable one, producing about 25% higher concentration of itaconic acid compared to batch mode.

  • PDF

Production of Acetic Acid from Cellulosic Biomass (섬유성 바이오매스를 이용한 Acetic Acid 생산)

  • 우창호;박준호;윤현희
    • KSBB Journal
    • /
    • v.15 no.5
    • /
    • pp.458-463
    • /
    • 2000
  • Production of acetic acid from cellulosic biomass by Simultaneous Saccharification and Extractive Fermentation (SSEF) was investigated. The homoacetate organism used in this study was a strain of Clostridium thermoaceticum, ATCC # 49707. A batch operation of Simultaneous Saccharification and Fermentation(SSF) using ${\alpha}$-cellulose at pH 5.5 and 55$^{\circ}C$ yielded 40% conversion of cellulose to acetic acid, while a fed-batch SSF operation produced a maximum acetic acid concentration of 25 g/L, with 50% overall yield. In-situ extractive fermentation to reduce the end-product inhibition on both bacteria and enzyme was carried out. in a batch SSEF using 200 g/L IRA-400 resin, acetic acid concentration reached to 23.9 g/L and acetic acid yield and productivity were observed to be 48% and 0.20 g/L-hr, respectively.

  • PDF

발효조의 냉각량 측정을 통한 유가배양제어

  • Hong, Geon-Pyo;Heo, Won
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.04a
    • /
    • pp.181-184
    • /
    • 2000
  • The cooling rate of a bioreactor was measured to estimate the heat generation by microbial cultivation production. The estimated heat production was calculated from the varying temperature of cooling water. It was used for monitoring growth and specific metabolic events for microbial cultivations. Metabolic heat measured was also adopted for a control parameter for fed-batch cultivation.

  • PDF

Growth of rotifer by the air, oxygen gas-supplied and the pH-adjusted and productivity of the high density culture (공기 및 산소 공급과 pH 조절에 따른 rotifer의 성장과 고밀도 배양의 생산성)

  • PARK Huem Gi;LEE Kyun Woo;KIM Sung Koo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.32 no.6
    • /
    • pp.753-757
    • /
    • 1999
  • The growth of rotifer, Brachionus rotundiformis was evaluated at different culture conditions. Rotifer was fed on condensed freshwater Chlorella. The productivity of rotifer in the high density culture system was compared to that of rotifer in the batch culture system, in which rotifer was fed on baker's yeast. The growth rate of rotifer increased as temperature increased in the culture system supplied with air or oxygen gas. The maximum density of rotifer in the culture systems supplied with air was in range of 16,300$\~$17,000 ind./ml at $24^{\circ}C$. In the culture systems supplied with oxygen gas, it ranged 26,300$\~$30,500 ind/ml at $28^{\circ}C$. When the concentration of dissolved oxygen in the culture system supplied with air reached to below 1 ppm or when the concentration of undissolved ammonia in the culture system supplied with oxygen gas reached 16.6$\~$22.6 ppm, the growth of rotifer decreased. When oxygen gas was supplied and pH was adjusted to 7, the maximum density of rotifer reached to 43,000 ind/ml at $32^{\circ}C$. The production costs for 10 billion rotifer in the high density culture and batch culture were 693,000 and 961,000 won, respectively. Therefore, it was concluded that the productivity of rotifer in the high density culture was higher than that in a batch culture.

  • PDF

Determination of Oxygen Transfer Coefficient in Fed-Batch Culture of Streptomyces avermitilis with Concentrated Medium Control (농축 배지 조절 유가식 배양에 의한 Streptomyces avermitilis의 산소전달계수 측정)

  • 오종현;전계택;정요섭
    • KSBB Journal
    • /
    • v.16 no.5
    • /
    • pp.516-522
    • /
    • 2001
  • The large-scale production of antibiotics by filamentous mycelial organism requires and adequate supply of dissolved oxygen. In terms of productivity, it means that oxygen transfer is the rate-limiting step. Therefore, the oxygen transfer coefficients(K$\_$L/A) were determined in a broth involving a filamentous mycelial organism such as Streptomyces avermitilis for use in fermentations. To determine (K$\_$L/A) inn a stirred vessel, a great deal of effort is required to provide all the cells with a sufficient oxygen supply. To overcome the oxygen limitation in a batch culture, a fed-batch culture was applied to control the growth rate by an intermittent supply of nutrients. Thus, it was possible to maintain a suitable dissolved oxygen concentration at a low agitation rate. The optimal agitation speed was 350 rpm at low cell concentrations (below 7 g/L) by considering the efficiency of agitation and shear stress. The (K$\_$L/A) was found to decrease from 64.26 to 29.21h.$\^$-1/ when the biomass concentration was increased from 9.82 to 12.06 g/L. In addition, and increase in viscosity was also observed during the growth phase. By comparing the (K$\_$L/A) values for the various agitation and aeration rates, it was found that the effect of an increase in (K$\_$L/A) by aeration was reduced dramatically at high biomass concentrations. However, this effect was not observed when altering the agitation rate. This suggests that controlling the dissolved oxygen concentration by altering the agitation rate was more efficient than increase the aeration rate.

  • PDF

Production of Mycelium and Expolysaccharides by Fed-batch Culture of Agaricus blazei (Agaricus blazei의 유가식 배양을 통한 균사체 및 세포외 다당체 생산)

  • Kim Hyun Han;Na Jeong-Geol;Chang Yong Keun;Lee Sang Jong
    • KSBB Journal
    • /
    • v.19 no.6 s.89
    • /
    • pp.457-461
    • /
    • 2004
  • DO-stat fed-batch cultures of Agaricus blazei were carried out using various feeding solutions, for the production of mycelial biomass and exopolysaccharides (EPS). It was observed to be more effective to use a feeding solution containing both carbon and nitrogen sources than that containing only carbon source. The best result was obtained when a feeding solution containing 450 g/l glucose, 60 g/l yeast extract, 30 g/l soytone peptone was used. The maxium mycelial biomass and EPS concentrations were 36.5 g/l and 10.9 g/l, respectively, at 100 hours of cultivation. The mycelial and EPS productivities were 0.37 g/l-h and 0.11 g/l-h, respectively. As compared with the batch culture, the mycelial biomass concentration and its productivity were 6.0- and 2.2-folds increased, respectively. The EPS concentration and its productivity were increased by 4.7 times and 1.8 times, respectively.

Effect of Various Factors on the Operational Stability of Immobilized Cells for Acrylamide Production in a Packed Bed Reactor

  • Lee, Cheo-Young;Choi, Sang-Kyo;Chang, Ho-Nam
    • Journal of Microbiology and Biotechnology
    • /
    • v.3 no.1
    • /
    • pp.39-45
    • /
    • 1993
  • The effect of concentrations of phosphate buffer and acrylonitrile, pH, and various salts on the operational stability of the immobilized cells of Brevibacterium CH2 in a packed bed reactor were investigated. The effects of salts and carriers on the swelling of the immobilized beads during hydrolysis in a columnreactor were also investigated. Immobilization of the cells in Ba-alginate was more desirable than those in polyacrylamide and Ca-alinate for the swelling of the immobilized beads and the desired quality of the acrylamide produced. High quality acrylamide was produced using the Ba-alginate beads in a recycle fed-batch reactor without using an isotonic substrate. The conversion yield was nearly 100%, including a trace amount of acrylic acid produced as a by-product.

  • PDF