• Title/Summary/Keyword: Fecal Gas Emissions

Search Result 16, Processing Time 0.023 seconds

Effects of Dietary Synbiotics from Anaerobic Microflora on Growth Performance, Noxious Gas Emission and Fecal Pathogenic Bacteria Population in Weaning Pigs

  • Lee, Shin Ja;Shin, Nyeon Hak;Ok, Ji Un;Jung, Ho Sik;Chu, Gyo Moon;Kim, Jong Duk;Kim, In Ho;Lee, Sung Sill
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.22 no.8
    • /
    • pp.1202-1208
    • /
    • 2009
  • Synbiotics is the term used for a mixture of probiotics (live microbial feed additives that beneficially affects the host animal) and prebiotics (non-digestible food ingredients that beneficially affect the organism). This study investigated the effect of probiotics from anaerobic microflora with prebiotics on growth performance, nutrient digestibility, noxious gas emission and fecal microbial population in weaning pigs. 150 pigs with an initial BW of 6.80${\pm}$0.32 kg (20 d of age) were randomly assigned to 5 dietary treatments as follows: i) US, basal diet+0.15% antibiotics (0.05% oxytetracycline 200 and 0.10% tiamulin 38 g), ii) BS, basal diet+0.2% synbiotics (probiotics from bacteria), iii) YS, basal diet+0.2% synbiotics (probiotics from yeast), iv) MS, basal diet+0.2% synbiotics (probiotics from mold), v) CS, basal diet+0.2% synbiotics (from compounds of bacteria, yeast and mold). The probiotics were contained in $10^{9}$ cfu/ml, $10^{5}$ cfu/ml and $10^{3}$ tfu/ml of bacteria, yeast and molds, respectively. The same prebiotics (mannan oligosaccharide, lactose, sodium acetate and ammonium citrate) was used for all the synbiotics. Pigs were housed individually for a 16-day experimental period. Growth performance showed no significant difference between antibiotic treatments and synbiotics-added treatments. The BS treatment showed higher (p<0.05) dry matter (DM) and nitrogen digestibility while ether extract and crude fiber digestibility were not affected by the dietary treatment. Also, the BS treatment decreased (p<0.05) fecal ammonia and amine gas emissions. Hydrogen sulfide concentration was also decreased (p<0.05) in BS, YS and MS treatments compared to other treatments. Moreover, all the synbioticsadded treatments increased fecal acetic acid concentration while the CS treatment had lower propionic acid concentration than the US treatment (p<0.05) gas emissions but decreased in fecal propionate gas emissions. Total fecal bacteria and Escherichia coli populations did not differ significantly among the treatments, while the Shigella counts were decreased (p<0.05) in synbiotics-included treatment. Fecal bacteria population was higher in the YS treatment than other treatments (p<0.05). The BS treatment had higher yeast concentration than YS, MS and CS treatments, while US treatment had higher mold concentrations than MS treatment (p<0.05). Therefore, the results of the present study suggest that synbiotics are as effective as antibiotics on growth performance, nutrient digestibility and fecal microflora composition in weaning pigs. Additionally, synbiotics from anaerobic microflora can decrease fecal noxious gas emission and synbiotics can substitute for antibiotics in weaning pigs.

Effects of different Bacillus licheniformis and Bacillus subtilis ratios on nutrient digestibility, fecal microflora, and gas emissions of growing pigs

  • Kim, Yong Ju;Cho, Sung Bo;Song, Min Ho;Lee, Sung Il;Hong, Seok Man;Yun, Won;Lee, Ji Hwan;Oh, Han Jin;Chang, Se Yeon;An, Jae Woo;Go, Young Bin;Song, Dong Cheol;Cho, Hyun Ah;Kim, Hyeun Bum;Cho, Jin Ho
    • Journal of Animal Science and Technology
    • /
    • v.64 no.2
    • /
    • pp.291-301
    • /
    • 2022
  • The objective of this study was to evaluate the effects of different mixing ratios of Bacillus licheniformis and Bacillus subtilis in diets on nutrient digestibility, fecal microflora, and odor gas emissions of growing pigs. A total of four crossbred ([Landrace × Yorkshire] × Duroc) barrows with average body weight (BW) of 41.2 ± 0.7 kg were randomly allotted four diets over four periods in a 4 × 4 Latin square design. Treatments were as follows: Control (CON, basal diet), CON + 0.2% probiotic complex (L4S6, B. licheniformis and B. subtilis at a 4:6 ratio), CON + 0.2% probiotic complex (L5S5, B. licheniformis and B. subtilis at a 5:5 ratio), CON + 0.2% probiotic complex (L6S4, B. licheniformis and B. subtilis at a 6:4 ratio). Dietary probiotic supplementation showed higher crude protein (CP) digestibility values and lower Escherichia coli counts in fecal samples than the CON group (p < 0.05). There was no significant difference in NH3 or H2S emission until day 3. The positive effect of H2S and NH3 emissions was detected earlier with the L4S6 and L5S5 compared to the L6S4, which had a lower ratio of B. subtilis. Both the L4S6 and L5S5 probiotic complexes significantly decreased the fecal H2S and NH3 emission in days 4 and 6 (p < 0.05). On day 7, all probiotic complexes decreased (p < 0.05) H2S and NH3 emissions than the CON group. Our results agreed that the dietary supplementation of Bacillus licheniformis and Bacillus subtilis complexes in growing pigs can significantly improve CP digestibility and reduce fecal E. coli counts, NH3 and H2S emissions. Notably, the higher mixing ratio of Bacillus subtilis in probiotic supplementation is more effective in reducing the odor of manure.

Achyranthes japonica extracts supplementation to growing pigs positively influences growth performance, nutrient digestibility, fecal microbial shedding, and fecal gas emission

  • Liu, Xiao;Lee, Sang In;Kim, In Ho
    • Animal Bioscience
    • /
    • v.34 no.3_spc
    • /
    • pp.427-433
    • /
    • 2021
  • Objective: An experiment was conducted to investigate the effects of Achyranthes japonica extracts (AJE) on the growth performance, nutrient digestibility, fecal microbial shedding, and fecal gas emission of growing pigs. Methods: A total of 180 ([Landrace×Yorkshire]×Duroc) growing pigs with initial body weight (BW) of 23.94±1.54 kg were used in this study to investigate the effects of AJE as a feed additive. Dietary treatments included: i) CON (basal diet), ii) TRT1 (basal diet+0.05% AJE), and iii) TRT2 (basal diet+0.10% AJE). Results: As a result of the dietary supplementation of 0% to 0.10% AJE, a linear increase of BW (p<0.05) on d 21 and 42, a linear increase of average daily gain (ADG) (p<0.05) during d 21 to 42, a trend in linear increase of ADG (p<0.10) during d 0 to 21 and d 0 to 42, a linear increase of gain to feed ratio (G:F) (p<0.05) during d 0 to 42, and a tendency in the linear increase of G:F during d 21 to 42 were observed in this study. Additionally, dietary supplementation of 0% to 0.10% AJE had a linear increase (p<0.05) on the apparent total tract digestibility of dry matter (DM) and energy, a linear increase (p<0.05) on lactic acid bacteria counts, a tendency in reducing (linear effect, p<0.10) coliform bacteria counts, and a linear decrease (p<0.05) in excreta H2S emission content in growing pigs. Conclusion: In conclusion, the results suggested that AJE had the potential to enhance growth performance, DM and energy digestibility, and fecal lactic acid bacteria counts, and decrease the fecal coliform bacteria counts and excreta H2S emission in growing pigs.

Lactulose as a potential additive to enhance the growth performance, nutrient digestibility, and microbial shedding, and diminish noxious odor emissions in weaning pigs

  • Vetriselvi, Sampath;Jae Hong, Park;Sureshkumar, Shanmugam;In Ho, Kim
    • Korean Journal of Agricultural Science
    • /
    • v.48 no.4
    • /
    • pp.965-973
    • /
    • 2021
  • The intention of this research is to analyze the effects of lactulose (LAC) supplementation on the growth performance, nutrient digestibility, microbial shedding, and fecal noxious gas emissions on weaning pigs in a 42-day trial. Based on the initial body weight and sex, a total of 255 piglets (21 day old) were randomly allocated into one of three dietary treatments with 15 replications and five pigs (two female and three male) per pen. The dietary treatments were as follows: a corn-soybean meal-based basal diet (CON) supplemented with 0, 1, and 2 g·kg-1 of LAC. During phase 1, significant (p < 0.05) increases in the average daily feed intake and average daily gain (ADG) were observed, whereas during phase 2 and overall experimental period, significant improvements (p < 0.05) in the body weight, ADG, and gain to feed ratio were observed in pigs fed a graded level of LAC compared to those fed the CON diet. Additionally, dietary LAC supplementation significantly improved (p < 0.05) the nutrient digestibility dry matter, nitrogen, and gross energy in both phase 1 and phase 2. Moreover, the inclusion of LAC supplementation significantly increased (p < 0.05) the fecal Lactobacillus counts and reduced (p > 0.05) the E. coli counts in pigs. Furthermore, LAC supplementation reduced (p > 0.05) fecal ammonia and hydrogen sulfide gas emissions during phase 2. The results here indicate that the addition of lactulose at 1 g·kg-1 and/or 2 g·kg-1 would be optimal to improve the performance outcomes of weaning piglets.

Effects of multi-enzyme supplementation in a corn and soybean meal-based diet on growth performance, apparent digestibility, blood characteristics, fecal microbes and noxious gas emission in growing pigs

  • Yin, Jia;Kim, In-Ho
    • Korean Journal of Agricultural Science
    • /
    • v.46 no.1
    • /
    • pp.1-10
    • /
    • 2019
  • The objective of this study was to determine the effect of multi-enzyme supplementation in a corn and soybean meal-based diet on the growth performance, apparent nutrient digestibility, blood profile, fecal microbes and noxious gas emission in growing pigs. A total of 80 crossbred [(Landrace ${\times}$ Yorkshire) ${\times}$ Duroc] growing pigs with an average body weight (BW) of $25.04{\pm}1.44kg$ were used in a 6-week experiment. The experimental treatments were as follows: CON, basal diet and; T1, basal diet + 100 mg/kg multi-enzyme. During the experiment, the pigs fed the diet with multi-enzyme supplementation had a higher gain to feed ratio (G/F) (p < 0.05) than the pigs fed the diet without multi-enzyme supplementation. On day 42, the pigs fed the diet with multi-enzyme supplementation had decreased $H_2S$ and $NH_3$ emissions (p < 0.05) than the pigs fed the diet without multi-enzyme supplementation. However, no effect was observed on nutrient digestibility, blood profiles and fecal microbes among the treatments (p > 0.05). In conclusion, it is suggested that multi-enzyme supplementation in a corn and soybean meal based diet can partly improve the growth performance and noxious gas emission of growing pigs.

Effect of dietary Achyranthes japonica extract on growth performance of growing pigs and absorption rate of quercetin in blood

  • Md Mortuza Hossain;Hyung Suk Hwang;Minyeong Pang;Min-Koo Choi;In Ho Kim
    • Journal of Animal Science and Technology
    • /
    • v.66 no.1
    • /
    • pp.103-114
    • /
    • 2024
  • This study was done to investigate the effects of the incorporation of Achyranthes japonica extracts (AJE) in diet on the production parameters of growing pigs. Exp 1: Total, 105 crossbred pigs (average body weight: 24.47 ± 2.46 kg) were used in a 6-week feeding trial. Pigs (seven replicates, five pigs per pen) were allotted randomly to three treatments. Dietary treatments: CON (basal diet); basal diet with 0.025% AJE, and basal diet + 0.050% AJE). Growth performance, nutrient digestibility, fecal microbial count, and fecal noxious gas were assessed in this study. Average daily gain (ADG), average daily feed intake (ADFI), and gain to feed ratio (G:F) were not affected by the addition of up to 0.05% AJE. In the case of apparent total tract digestibility (ATTD), dry matter (DM), nitrogen (N), and digestible energy (DE) were not changed in 3rd and 6th weeks of the feeding trial through the addition of AJE up to 0.05% in the growing pig diet. In microbial count, Lactobacillus and Escherichia coli count at 3rd and 6th week was similar in all the treatment diets. The inclusion of AJE at levels up to 0.05% in growing pig diet had no effect on the production of NH3, H2S, acetic acid, and CO2 in the feces. After ending the Exp 1, a total of nine pigs were divided into three treatment groups. Treatment diets were included, TRT1, basal diet + powder quercetin 30 g; TRT2, basal diet + powder quercetin 150 g; TRT3, basal diet + powder quercetin 300g. Rate of absorption in blood was increased with the higher dose of quercetin. The results suggested incorporation of AJE up to 0.05% has no significant effect on ADG, ADFI, and G:F, as well as DM, N, and DE digestibility, fecal microbial count, and fecal noxious gas emission in growing pigs, even though no negative effect was found.

Changes in growth performance, nutrient digestibility, immune blood profiles, fecal microbial and fecal gas emission of growing pigs in response to zinc aspartic acid chelate

  • Jiao, Yang;Li, Xinran;Kim, In Ho
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.4
    • /
    • pp.597-604
    • /
    • 2020
  • Objective: This study was conducted to investigate the effect of zinc aspartic acid chelate (Zn-ASP) on growth performance, nutrient digestibility, blood profiles, fecal microbial and fecal gas emission in growing pigs. Methods: A total of 160 crossbred ([Landrace×Yorkshire]×Duroc) growing pigs with an initial body weight (BW) of 25.56±2.22 kg were used in a 6-wk trial. Pigs were randomly allocated into 1 of 4 treatments according to their sex and BW (8 replicates with 2 gilts and 3 barrows per replication pen). Treatments were as follows: i) CON, basal diet, ii) TRT1, CON+0.1% Zn-ASP, iii) TRT2, CON+0.2% Zn-ASP, and iv) TRT3, CON+0.3% Zn-ASP. Pens were assigned in a randomized complete block design to compensate for known position effects in the experimental facility. Results: In the current study, BW, average daily gain, and gain:feed ratio showed significant improvement as dietary Zn-ASP increased (p<0.05) in growing pigs. Apparent total tract digestibility (ATTD) of dry matter was increased linearly (p<0.05) in pigs fed with Zn-ASP diets. A linear effect (p<0.05) was detected for the Zn concentration in blood with the increasing levels of Zn-ASP supplementation. Lactic acid bacteria and coliform bacteria were affected linearly (p<0.05) in pigs fed with Zn-ASP diets. However, no significant differences were observed in the ATTD of nitrogen, energy and Zn. And dietary Zn-ASP supplementation did not affect fecal ammonia, hydrogen sulfide and total mercaptans emissions in growing pigs. Conclusion: In conclusion, dietary supplementation with Zn-ASP of diet exerted beneficial effects on the growth performance, nutrient digestibility, blood profiles and fecal microbes in growing pigs.

Effect of Feeding Multiple Probiotics on Performance and Fecal Noxious Gas Emission in Broiler Chicks (혼합 생균제의 급여가 육계의 생산성 및 계분의 유해가스 발생에 미치는 영향)

  • Yoon C.;Na C. S.;Park J. H.;Han S. K.;Nam Y. M.;Kwon J. T.
    • Korean Journal of Poultry Science
    • /
    • v.31 no.4
    • /
    • pp.229-235
    • /
    • 2004
  • A study was conducted to examine the effect of dietary supplementation of multiple probiotics (EM) on growth performance, blood cholesterol, intestinal micro flora, and fecal gas emission in broiler chicks. A total of 450 one day old male broiler chicks (Ross $\times$ Ross) were divided into six treatments with five replications in each treatment for five weeks. Treatments were factorially designed with two levels of diet containing probiotics (DW; 0, $0.2\%$) and three levels of drinking water containing probiotics (DW; 0, 0.01, $0.1\%$). Basal diets contained $21.5\%$ CP and 3,100 kcal/kg ME for starting and $19\%$ CP and 3,100 kcal/kg ME for finishing period. Weight gain, feed intake, and feed conversions of birds fed with probiotics were not significantly different between Ds. Total cholesterol and triglyceride levels were significantly lower (P<0.05) in birds fed with DW $0.01\%$ or $0.1\%$ compared with no probiotics group, but there was no significant difference between D treatments. The number of E. coli, Salmonella and Lactobacillus in the ileum and cecum of the birds fed multiple probiotics were not significantly different from those of no probiotic groups. There were no significant differences in the $CO_2$ gas emissions of fecal between birds fed with Ds or among birds fed with DW. However, $NH_3$ gas emissions of DW $0.1\%$ were significantly lower (P<0.05) than DW $0\%$. In the results of this study, supplementation of probiotics tended to decrease the serum cholesterol and triglyceride compared to those of control groups and reduction of fecal $NH_3$ gas emission.

Evaluation of rapeseed meal as a protein source to replace soybean meal in growing pigs

  • Kim, Jong Keun;Lei, Xin Jian;Lee, Sang In;Lee, Il Seok;Kim, In Ho
    • Korean Journal of Agricultural Science
    • /
    • v.44 no.2
    • /
    • pp.235-243
    • /
    • 2017
  • A total of 112 crossbred pigs [(Yorkshire ${\times}$ Landrace) ${\times}$ Duroc] with an average body weight (BW) of $27.98{\pm}1.28kg$ were used to evaluate the effects of replacing soybean meal (SBM) with rapeseed meal (RSM) as a source of protein on growth performance, nutrient digestibility, blood characteristics, and fecal noxious gas emission in growing pigs. The pigs were blocked and stratified based on BW into one of four dietary treatments in a 6-week trial. Each treatment consisted of 7 replicate pens with 4 pigs per pen (2 barrows and 2 gilts). Treatments were 1) maize-SBM based diet, 2) diet containing 2% RSM, 3) diet containing 4% RSM, and 4) diet containing 6% RSM. Supplementation with RSM resulted in no differences in growth performance, nutrient digestibility, and noxious gas emission, as compared with SBM supplementation during the experimental period (p > 0.05). Pigs fed with increased dietary RSM (0, 2, 4, and 6% of feed) had linear decreases in average daily gain (ADG) (p = 0.010) and nitrogen digestibility (p = 0.036) and a linear increase in blood creatinine concentration. In conclusion, RSM fed pigs had no detrimental effects on their growth performance, nutrient digestibility, blood characteristics, and fecal noxious gas emissions, as compared with SBM fed pigs. Thus, RSM is a good alternative to SBM as a protein source in growing pigs' diets.

The Effects of Dietary Biotite V Supplementation on Growth Performance, Nutrients Digestibility and Fecal Noxious Gas Content in Finishing Pigs

  • Chen, Y.J.;Kwon, O.S.;Min, B.J.;Shon, K.S.;Cho, J.H.;Kim, I.H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.8
    • /
    • pp.1147-1152
    • /
    • 2005
  • Two experiments were conducted to evaluate the effects of dietary Biotite V (BV) supplementation on growth performance, nutrients digestibility and fecal noxious gas content in finishing pigs. In Exp. 1, a total of eighty pigs (initial body weight 88.0${\pm}$1.35 kg) were used in a 35-d growth trial. Pigs were blocked by weight and allotted to five dietary treatments in a randomized complete block design. There were four pigs per pen and four pens per treatment. Dietary treatments included: 1) Control (CON; basal diet), 2) 200 mesh BV1.0 (basal diet+200 mesh Biotite V 1.0%), 3) 325 mesh BV1.0 (basal diet+325 mesh Biotite V 1.0%), 4) 200 mesh BV2.0 (basal diet+200 mesh Biotite V 2.0%) and 5) 325 mesh BV2.0 (basal diet+325 mesh Biotite V 2.0%). Through the entire experimental period, there were no significant differences in ADG, ADFI and gain/feed among the treatments (p>0.05). With the addition of Biotite V in diet, DM and N digestibilities were increased significantly (p<0.01). Also, Ca and P digestibilities tended to increase in pigs fed Biotite V supplemented diet (p<0.01) compared to pigs fed control diet. Supplementation of Biotite V in diet reduced the fecal $NH_3-N$ and volatile fatty acid (VFA) compared to CON treatment (p<0.01). In Exp. 2, a total of sixty four pigs (initial body weight 84.0${\pm}$1.05 kg) were used in a 35-d growth trial. Pigs were blocked by weight and allotted to four dietary treatments in a randomized complete block design. There were four pigs per pen and four pens per treatment. Dietary treatments included: 1) LP (low protein diet), 2) HP (high protein diet), 3) LP+BV (low protein diet+325 mesh Biotite V 1.0%) and 4) HP+BV (high protein diet+325 mesh Biotite V 1.0%). Through the entire experimental period, ADG and gain/feed tended to increase in HP and HP+BV treatments, however, there were no significant differences (p>0.05) among the treatments. With the addition of Biotite V in diets, digestibilities of nutrients (DM, N, Ca and P) were increased significantly (p<0.01). The addition of Biotite V in diets reduced the ammonia emissions in feces (p<0.01). Supplementation of Biotite V in diets also reduced the fecal propionic acid, butyric acid and acetic acid (p<0.01) compared to pigs fed diets without Biotite V. In conclusion, supplementation of Biotite V can increase nutrients digestibility and reduce fecal $NH_3-N$ and volatile fatty acid (VFA) concentrations in finishing pigs.