• Title/Summary/Keyword: Feature-extraction

Search Result 2,582, Processing Time 0.026 seconds

Line feature extraction in a noisy image

  • Lee, Joon-Woong;Oh, Hak-Seo;Kweon, In-So
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10a
    • /
    • pp.137-140
    • /
    • 1996
  • Finding line segments in an intensity image has been one of the most fundamental issues in computer vision. In complex scenes, it is hard to detect the locations of point features. Line features are more robust in providing greater positional accuracy. In this paper we present a robust "line features extraction" algorithm which extracts line feature in a single pass without using any assumptions and constraints. Our algorithm consists of five steps: (1) edge scanning, (2) edge normalization, (3) line-blob extraction, (4) line-feature computation, and (5) line linking. By using edge scanning, the computational complexity due to too many edge pixels is drastically reduced. Edge normalization improves the local quantization error induced from the gradient space partitioning and minimizes perturbations on edge orientation. We also analyze the effects of edge processing, and the least squares-based method and the principal axis-based method on the computation of line orientation. We show its efficiency with some real images.al images.

  • PDF

FPGA-Based Hardware Accelerator for Feature Extraction in Automatic Speech Recognition

  • Choo, Chang;Chang, Young-Uk;Moon, Il-Young
    • Journal of information and communication convergence engineering
    • /
    • v.13 no.3
    • /
    • pp.145-151
    • /
    • 2015
  • We describe in this paper a hardware-based improvement scheme of a real-time automatic speech recognition (ASR) system with respect to speed by designing a parallel feature extraction algorithm on a Field-Programmable Gate Array (FPGA). A computationally intensive block in the algorithm is identified implemented in hardware logic on the FPGA. One such block is mel-frequency cepstrum coefficient (MFCC) algorithm used for feature extraction process. We demonstrate that the FPGA platform may perform efficient feature extraction computation in the speech recognition system as compared to the generalpurpose CPU including the ARM processor. The Xilinx Zynq-7000 System on Chip (SoC) platform is used for the MFCC implementation. From this implementation described in this paper, we confirmed that the FPGA platform is approximately 500× faster than a sequential CPU implementation and 60× faster than a sequential ARM implementation. We thus verified that a parallelized and optimized MFCC architecture on the FPGA platform may significantly improve the execution time of an ASR system, compared to the CPU and ARM platforms.

CLASSIFIED ELGEN BLOCK: LOCAL FEATURE EXTRACTION AND IMAGE MATCHING ALGORITHM

  • Hochul Shin;Kim, Seong-Dae
    • Proceedings of the IEEK Conference
    • /
    • 2003.07e
    • /
    • pp.2108-2111
    • /
    • 2003
  • This paper introduces a new local feature extraction method and image matching method for the localization and classification of targets. Proposed method is based on the block-by-block projection associated with directional pattern of blocks. Each pattern has its own eigen-vertors called as CEBs(Classified Eigen-Blocks). Also proposed block-based image matching method is robust to translation and occlusion. Performance of proposed feature extraction and matching method is verified by the face localization and FLIR-vehicle-image classification test.

  • PDF

Character recognition using Hough transform (Hough변환을 이용한 문자인식)

  • 강선미;김봉석;황승옥;양윤모;김덕진
    • Proceedings of the Korean Institute of Communication Sciences Conference
    • /
    • 1991.10a
    • /
    • pp.77-80
    • /
    • 1991
  • This paper proposes a new feature extraction method which is effectively used in character recognition, and validate the effectiveness through various computational methods for similiarity degree. To get feature vectors used in this method, Hough transform is applied to character image, which is used for edge extraction in image processing. By that transformation technique, strokes could be extracted and feature vectors constructed suitably. The characteristic of this method is solving the difficulties in stroke extraction through transform space analysis, which is induced by noise and blurring, and representing high recognition rate 99.3% within 10 candidates in relative low dimension.

Robust Feature Extraction for Voice Activity Detection in Nonstationary Noisy Environments (음성구간검출을 위한 비정상성 잡음에 강인한 특징 추출)

  • Hong, Jungpyo;Park, Sangjun;Jeong, Sangbae;Hahn, Minsoo
    • Phonetics and Speech Sciences
    • /
    • v.5 no.1
    • /
    • pp.11-16
    • /
    • 2013
  • This paper proposes robust feature extraction for accurate voice activity detection (VAD). VAD is one of the principal modules for speech signal processing such as speech codec, speech enhancement, and speech recognition. Noisy environments contain nonstationary noises causing the accuracy of the VAD to drastically decline because the fluctuation of features in the noise intervals results in increased false alarm rates. In this paper, in order to improve the VAD performance, harmonic-weighted energy is proposed. This feature extraction method focuses on voiced speech intervals and weighted harmonic-to-noise ratios to determine the amount of the harmonicity to frame energy. For performance evaluation, the receiver operating characteristic curves and equal error rate are measured.

Design of Fuzzy k-Nearest Neighbors Classifiers based on Feature Extraction by using Stacked Autoencoder (Stacked Autoencoder를 이용한 특징 추출 기반 Fuzzy k-Nearest Neighbors 패턴 분류기 설계)

  • Rho, Suck-Bum;Oh, Sung-Kwun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.1
    • /
    • pp.113-120
    • /
    • 2015
  • In this paper, we propose a feature extraction method using the stacked autoencoders which consist of restricted Boltzmann machines. The stacked autoencoders is a sort of deep networks. Restricted Boltzmann machines (RBMs) are probabilistic graphical models that can be interpreted as stochastic neural networks. In terms of pattern classification problem, the feature extraction is a key issue. We use the stacked autoencoders networks to extract new features which have a good influence on the improvement of the classification performance. After feature extraction, fuzzy k-nearest neighbors algorithm is used for a classifier which classifies the new extracted data set. To evaluate the classification ability of the proposed pattern classifier, we make some experiments with several machine learning data sets.

Wafer Dicing State Monitoring by Signal Processing (신호처리를 이용한 웨이퍼 다이싱 상태 모니터링)

  • 고경용;차영엽;최범식
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.5
    • /
    • pp.70-75
    • /
    • 2000
  • After the patterning and probe process of wafer have been achieved, the dicing process is necessary to separate chips from a wafer. The dicing process cuts a wafer to lengthwise and crosswise direction to make many chips by using narrow circular rotating diamond blade. But inferior goods are made under the influence of complex dicing environment such as blade, wafer, cutting water and cutting conditions. This paper describes a monitoring algorithm using feature extraction in order to find out an instant of vibration signal change when bad dicing appears. The algorithm is composed of two steps: feature extraction and decision. In the feature extraction, two features processed from vibration signal which is acquired by accelerometer attached on blade head are proposed. In the decision. a threshold method is adopted to classify the dicing process into normal and abnormal dicing. Experiment have been performed for GaAs semiconductor wafer. Based upon observation of the experimental results, the proposed scheme shown a good accuracy of classification performance by which the inferior goods decreased from 35.2% to 12.8%.

  • PDF

FERET DATA SET에서의 PCA와 ICA의 비교

  • Kim, Sung-Soo;Moon, Hyeon-Joon;Kim, Jaihie
    • Proceedings of the IEEK Conference
    • /
    • 2003.07e
    • /
    • pp.2355-2358
    • /
    • 2003
  • The purpose of this paper is to investigate two major feature extraction techniques based on generic modular face recognition system. Detailed algorithms are described for principal component analysis (PCA) and independent component analysis (ICA). PCA and ICA ate statistical techniques for feature extraction and their incorporation into a face recognition system requires numerous design decisions. We explicitly state the design decisions by introducing a modular-based face recognition system since some of these decision are not documented in the literature. We explored different implementations of each module, and evaluate the statistical feature extraction algorithms based on the FERET performance evaluation protocol (the de facto standard method for evaluating face recognition algorithms). In this paper, we perform two experiments. In the first experiment, we report performance results on the FERET database based on PCA. In the second experiment, we examine performance variations based on ICA feature extraction algorithm. The experimental results are reported using four different categories of image sets including front, lighting, and duplicate images.

  • PDF

Feature Extraction on High Dimensional Data Using Incremental PCA (점진적인 주성분분석기법을 이용한 고차원 자료의 특징 추출)

  • Kim Byung-Joo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.8 no.7
    • /
    • pp.1475-1479
    • /
    • 2004
  • High dimensional data requires efficient feature extraction techliques. Though PCA(Principal Component Analysis) is a famous feature extraction method it requires huge memory space and computational cost is high. In this paper we use incremental PCA for feature extraction on high dimensional data. Through experiment we show that proposed method is superior to APEX model.

Emotion Recognition of Facial Expression using the Hybrid Feature Extraction (혼합형 특징점 추출을 이용한 얼굴 표정의 감성 인식)

  • Byun, Kwang-Sub;Park, Chang-Hyun;Sim, Kwee-Bo
    • Proceedings of the KIEE Conference
    • /
    • 2004.05a
    • /
    • pp.132-134
    • /
    • 2004
  • Emotion recognition between human and human is done compositely using various features that are face, voice, gesture and etc. Among them, it is a face that emotion expression is revealed the most definitely. Human expresses and recognizes a emotion using complex and various features of the face. This paper proposes hybrid feature extraction for emotions recognition from facial expression. Hybrid feature extraction imitates emotion recognition system of human by combination of geometrical feature based extraction and color distributed histogram. That is, it can robustly perform emotion recognition by extracting many features of facial expression.

  • PDF